Improvement of the gas separator flow path using the multiphase coefficient of the discrete particles relative motion speed
Authors: Trulev A.V., Timushev S.F., Lomakin V.O., Klipov A.V., Shmidt E.M. | Published: 02.10.2023 |
Published in issue: #10(763)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: vortex-type gas separator, mechanical impurities, flow part, multiphase coefficient, relative speed, multiphase speed coefficient |
The paper analyzes features of the flowing formation fluid that contains free gas bubbles in the flow part of a vortex-type separator with the movable screw. Expressions are derived for a dimensionless multiphase coefficient of the discrete particles relative separation rate and the multiphase similarity criterion, which are making it possible to evaluate the gas separator efficiency, design and develop new devices based on the previously created highly efficient models. The derived equations allow determining the main geometric dimensions of the gas separator flow part based on the given radial dimensions, nominal flow rate and permissible content of free gas at the inlet. For the obtained geometric dimensions of the gas separator flow part, it becomes possible to construct dependences of the separation coefficient and the permissible amount of free gas at the inlet on the rotor rotation speed, flow rate and physical properties of the multiphase mixture.
References
[1] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [Technology and technique of oil production by submersible pumps in complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[2] Dengaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey. Diss. kand. tekh. nauk [Enhancement of well operation efficiency by submersible centrifugal pumps when pumping gas-liquid mixtures. Kand. tech. sci. diss.]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2005. 212 p. (In Russ.).
[3] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian vane pump installations for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[4] Vakhitova R.I., Saracheva D.A., Urazakov D.R. et al. Povyshenie effektivnosti raboty pogruzhnykh elektrotsentrobezhnykh ustanovok pri dobyche nefti s vysokim gazosoderzhaniem [Improving efficiency of submersible electric centrifugal units in oil production with high gas content]. Almetyevsk, AGNI Publ., 2019. 104 p. (In Russ.).
[5] Yakimov S.B., Shportko A.A., Shalagin Yu.Yu. Ways of improving gas separators reliability used to protect electric centrifugal pumps in the deposits of (ESP) PJSC "NK "Rosneft". Oborudovanie i tekhnologii dlya neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Complex], 2017, no. 1, pp. 33–39. (In Russ.).
[6] Yakimov S.B. Potential optimization of ESP wear resistance class at Orenburgneft JSC fields. Nauchno-tekhnicheskiy vestnik OAO "NK "Rosneft", 2015, no. 3, pp. 85–92. (In Russ.).
[7] Trulev A.V., Klipov A.V., Makarova N.A. Sposob dobychi plastovoy zhidkosti s soderzhaniem gaza i abrazivnykh chastits i pogruzhnaya ustanovka s nasosom i gazoseparatorom dlya ego osushchestvleniya [Method for producing reservoir fluid containing gas and abrasive particles and a submersible unit with a pump and a gas separator for its implementation]. Patent RU 2774343. Appl. 26.09.2021, publ. 17.06.2022. (In Russ.).
[8] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptualno novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and test output introduction of ESP of conceptually new construction for exploitation of low-debit well with high content free gas and mechanical impurities]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Collection of works by laureates of the international contest of scientific, technical and innovative developments aimed at the development of fuel and energy and extractive industry]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[9] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[10] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[11] Trulev A.V., Timushev S.F., Shmidt E.M. Features of ESP gas separator bench tests for oil production purposes. Neft. Gaz. Novatsii, 2020, no. 7, pp. 59–66. (In Russ.).
[12] Trulev A.V., Timushev S.F., Lomakin V.O. Conceptual features of the method of bench testing of gas separators for submersible electric centrifugal pumps for oil production. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 11–27. (In Russ.).
[13] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[14] Trulev A.V., Shmidt E.M. Bench tests methodological specifics of submersible electric centrifugal pumps gas separating installations for oil extraction. Vestnik MAI [Aerospace MAI Journal], 2021, vol. 28, no. 3, pp. 73–80, doi: https://doi.org/10.34759/vst-2021-2-73-80 (in Russ.).
[15] Lyapkov P.D. Movement of a spherical particle relative to the liquid in the inter-blade channel of a centrifugal pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).
[16] Yakovlev A.A., Timushev S.F., Tsipenko A.V. Study of axial fan in the CAE system "FlowVision". Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 6, pp. 35–38. (In Russ.).
[17] Gordeev V.A., Timushev S.F., Firsov V.P. et al. Numerical study of fluid behaviour in launch vehicle tanks. Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 1, pp. 47–53. (In Russ.).
[18] Achour L., Speclin M., Belaidi I. et al. Numerical study of the performance loss of a centrifugal pump carrying emulsion. E3S Web Conf., 2021, vol. 321, art. 01010, doi: https://doi.org/10.1051/e3sconf/202132101010
[19] Achour L., Speclin M., Belaidi I. et al. Numerical assessment of the hydrodynamic behavior of a volute centrifugal pump handling emulsion. Entropy, 2022, vol. 24, no. 2, art. 221, doi: https://doi.org/10.3390/e24020221
[20] Valdés J.P., Asuaje M., Ratkovich N. Study of an ESP’s performance handling liquid-liquid flow and unstable O-W emulsions part II: coupled CFD-PBM modelling. J. Pet. Sci. Eng., 2021, vol. 198, art. 108227, doi: https://doi.org/10.1016/j.petrol.2020.108227
[21] Banjar H., Zhang H.Q. Experiments and emulsion rheology modeling in an electric submersible pump. Proc. Int. Petroleum Technology Conf., 2019, paper IPTC-19463-MS, doi: https://doi.org/10.2523/iptc-19463-ms
[22] Trulev A.V., Sherstyuk A.N. To calculate the flow of two-component mixtures in pumps and gas separators. Khimicheskoe i neftyanoe mashinostroenie, 2000, no. 8, pp. 36–38. (In Russ.).
[23] Trulev A.V., Lomakin V.O., Klindukh I.V. et al. Design features of impeller vane cascades to pump gas and liquid mixtures conducive to reducing gas cavern magnitudes. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 9, pp. 73–84, doi: http://dx.doi.org/10.18698/0536-1044-2022-9-73-84 (in Russ.).
[24] Kutateladze S.S., Styrikovich M.A. Gidravlika gazozhidkostnykh system [Hydraulics of gas-liquid systems]. Moscow, Leningrad, Gosenergoizdat Publ., 1958. 231 p. (In Russ.).
[25] Tong L.S. Boiling heat transfer and two-phase flow. CRC Press, 1997. ?572 p. (Russ. ed.: Teplootdacha pri kipenii i dvukhfaznoe techenie. Moscow, Mir Publ., 1968. 344 p.)
[26] Podvidz L.G., ed. Metodicheskoe posobie po raschetu shneko-tsentrobezhnoy stupeni nasosa [Methodical manual on calculation of screw-centrifugal pump stage]. Moscow, Bauman MHTU Publ., 1975. 64 p. (In Russ.).
[27] Zhu J., Zhu H., Cao G. et al. A new mechanistic model for oil-water emulsion rheology and boosting pressure prediction in electrical submersible pumps ESP. Proc. SPE Annual Technical Conf. and Exhibition, 2019, art. SPE-196155-MS, doi: https://doi.org/10.2118/196155-ms
[28] Zhu J., Zhu H., Cao G. et al. A new mechanistic model to predict boosting pressure of electrical submersible pumps ESPs under high-viscosity fluid flow with validations by experimental data. Proc. SPE Gulf Coast Section Electric Submersible Pumps Symp., 2019, art. SPE-194384-MS, doi: https://doi.org/10.2118/194384-ms
[29] Zhang M., Dabirian R., Mohan R.S. et al. Effect of shear and water cut on phase inversion and droplet size distribution in oil-water flow. J. Energy Resour. Technol., 2019, vol. 141, no. 3, art. 032905, doi: https://doi.org/10.1115/1.4041661
[30] Lomakin V.O., Chaburko P.S., Kuleshova M.S. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Eng., 2017, vol. 176, pp. 476–482, doi: https://doi.org/10.1016/j.proeng.2017.02.347
[31] Lomakin V.O., Kuleshova M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[32] Lomakin V.O., Kuleshova M.S., Kraeva E.A. Fluid flow in the throttle channel in the presence of cavitation. Procedia Eng., 2015, vol. 106, pp. 27–35, doi: https://doi.org/10.1016/j.proeng.2015.06.005
[33] Shargatov V.A., Gorkunov S.V., Il’ichev A.T. Dynamics of front-like water evaporation phase transition interfaces. Nonlinear Sci. Numer. Simul., 2019, vol. 67, pp. 223–236, doi: https://doi.org/10.1016/j.cnsns.2018.07.006
[34] Arefyev K.Y., Prokhorov A.N., Saveliev A.S. Study of the breakup of liquid droplets in the vortex wake behind pylon at high airspeeds. Thermophys. Aeromech., 2018, vol. 25, no. 1, pp. 55–66, doi: https://doi.org/10.1134/S0869864318010055
[35] Gouskov A.M., Lomakin V.O., Banin E.P. et al. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Biomed. Eng., 2017, vol. 51, no. 4, pp. 229–233, doi: https://doi.org/10.1007/s10527-017-9720-9
[36] Arefyev K.Y., Voronetsky A.V., Suchkov S.A. et al. Computational and experimental study of the two-phase mixing in gas-dynamic ignition system. Thermophys. Aeromech., 2017, vol. 24, no. 2, pp. 225–237, doi: https://doi.org/10.1134/S086986431702007X
[37] Trulev A., Kayuda M., Timushev S. et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012042, doi: https://doi.org/10.1088/1757-899X/779/1/012042
[38] Cheremushkin V., Lomakin V., Kalin N. et al. Development and research of a borehole centrifugal pump stage. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012055, doi: https://doi.org/10.1088/1757-899X/779/1/012055
[39] Musinskiy A.N. Razrabotka i issledovanie vikhrevykh gazoseparatorov dlya vysokodebitnykh skvazhin. Diss. kand. tekh. nauk [Development and research of vortex gas separators for high-rate wells. Kand. tech. sci. diss.]. Perm, PNIPU Publ., 2021. 172 p. (In Russ.).
[40] Trulev A.V. A method for pumping out reservoir fluid with a high content of gas and abrasive particles and a submersible installation with a paddle pump and a gas separator for its implementation. Patent RU 2749586 Appl. 23.11.2020, publ. 15.06.2021.