Heat flow pattern of the plain thrust bearing
Authors: Sokolov N.V., Fedotov P.E. | Published: 09.01.2024 |
Published in issue: #1(766)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: thrust bearing, lubricating layer, fixed pad, thrust disk, heat flow, convective heat transfer |
The developed Sm2Px3Tx? program was used to obtain the heat flow distribution pattern in the working cushion middle section, lubricating and boundary layers and the thrust disc, which are structural elements of the plain thrust bearing with fixed cushions of the centrifugal or screw compressor. The paper provides fundamental description of the periodic thermoelastic hydrodynamic mathematical simulation, thermal balance and physical processes in the thrust bearing operation mode. The bearing convective and conductive heat flows were compared at alteration of the disk rotation speed and the working load height. The need was identified to take into account heat exchange between the lubricant working volume and the pad and disk boundaries in simulating the plain bearing.
References
[1] Khadiev M.B., Khamidullin I.V. Kompressory v tekhnologicheskikh protsessakh [Compressors in technological processes]. Kazan, KNITU Publ., 2021. 260 p. (In Russ.).
[2] Dadouche A., Fillon M., DeCamillo S.M. Hydrodynamic fixed geometry thrust bearings. In: Encyclopedia of tribology. Springer, 2013, pp. 1718–1729, doi: https://doi.org/10.1007/978-0-387-92897-5_48
[3] Khadiev M.B. Gidrodinamicheskie, teplovye i deformatsionnye kharakteristiki smazochnykh sloev upornykh podshipnikov turbomashin [Hydrodynamic, thermal and deformation characteristics of lubricating layers of thrust bearings of turbomachines]. Kazan, Kazan. gos. tekhnol. un-t Publ., 2001. 96 p. (In Russ.).
[4] Sokolov N.V. Upornye podshipniki skolzheniya kompressornykh mashin s profilirovannymi rabochimi poverkhnostyami. Avtoref. diss. kand. tekh. nauk [Thrust sliding bearings of compressor machines with profiled working surfaces. Abs. kand. tech. sci. diss.]. Kazan, KNITU Publ., 2014. 16 p. (In Russ.).
[5] Khisameev I.G., Maksimov V.A., Batkis G.S. et al. Proektirovanie i ekspluatatsiya promyshlennykh tsentrobezhnykh kompressorov [Design and operation of industrial centrifugal compressors]. Kazan, Fen Publ., 2010. 671 p. (In Russ.).
[6] Sokolov N.V., Khadiev M.B., Fedotov P.E. et al. Influence of the lubricant supply temperature on the operation of a thrust sliding bearing. Vestnik mashinostroeniya, 2023, no. 1, pp. 47–55. (In Russ.). (Eng. version: Influence of the lubricant’s supply temperature on the operation of a fluid film thrust bearing. Russ. Engin. Res., 2023, vol. 43, no. 3, pp. 264–271, doi: https://doi.org/10.3103/S1068798X23040329)
[7] Sokolov N.V., Kuzovova S.N. Kompressory v tekhnologicheskikh protsessakh. Smazochnye materialy [Compressors in technological processes. Lubricants]. Kazan, KNITU Publ., 2021. 108 p. (In Russ.).
[8] Petrov N.P. Trenie v mashinakh i vliyanie na nego smazyvayushchey zhidkosti [Friction in machines and influence of lubricating liquid on it]. Sankt-Petersburg, Tipografiya A.S. Suvorina Publ., 1883. 210 p. (In Russ.).
[9] He M., Byrne J.M. Fundamentals of fluid film thrust bearing operation and modeling. Asia Turbomachinery and Pump Symp., 2018, pp. 1–26.
[10] Podolskiy M.E. Upornye podshipniki skolzheniya. Teoriya i raschet [Thrust bearings of sliding. Theory and calculation]. Leningrad, Mashinostroenie Publ., 1981. 261 p. (In Russ.).
[11] Fedotov P.E., Fedotov E.M., Sokolov N.V. et al. Sm2Px3Tx? — dynamicheski nagruzhennyy upornyy podshipnik skolzheniya pri postanovke pryamoy zadachi [Sm2Px3Tx? - dynamically loaded thrust sliding bearing in direct problem setting.]. Svid. o gos. reg. prog. dlya EVM 2020615227 [Software reg. certificate 2020615227]. Reg. 19.05.2020. (In Russ.).
[12] Sokolov N.V., Khadiev M.B., Maksimov T.V. et al. Mathematical modeling of dynamic processes of lubricating layers thrust bearing turbochargers. J. Phys.: Conf. Ser., 2019, vol. 1158, no. 4, art. 042019, doi: https://doi.org/10.1088/1742-6596/1158/4/042019
[13] Sokolov N.V., Khadiev M.B., Fedotov P.E. et al. Numerical study of the influence of lubricant viscosity grade on thrust bearing. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2023, no. 1, pp. 92–111. (In Russ.).
[14] Yudaev B.N. Teploperedacha [Heat transfer]. Moscow, Vysshaya shkola Publ., 1973. 360 p. (In Russ.).
[15] Fedotov E.M. Limit Galerkin–Petrov schemes for a nonlinear convection-diffusion equation. Diff. Equat., 2010, vol. 46, no. 7, pp. 1042–1052, doi: https://doi.org/10.1134/S0012266110070116
[16] Glavatskikh S.B. Steady state performance characteristics of a tilting pad thrust bearing. J. Tribol., 2001, vol. 123, no. 3, pp. 608–615, doi: https://doi.org/10.1115/1.1308041
[17] Glavatskikh S.B., Fillon M., Larsson R. The significance of oil thermal properties on the performance of a tilting-pad thrust bearing. J. Tribol., 2002, vol. 124, no. 2, pp. 377–385, doi: https://doi.org/10.1115/1.1405129
[18] Rukhlinskiy V.V., Usachev I.D., Zaretskiy E.I. et al. Heat exchange and lubricant flow in axial plain bearings. Energomashinostroenie, 1989, no. 12, pp. 7–10. (In Russ.).
[19] Zaretskiy E.I., Serezhkina L.P., Usachev I.D. About design of thrust bearing pads. Energomashinostroenie, 1971, no. 4, pp. 31–33. (In Russ.).
[20] Uskov M.K., Maksimov V.A. Gidrodinamicheskaya teoriya smazki: etapy razvitiya, sovremennoe sostoyanie, perspektivy [Hydrodynamic theory of lubrication: stages of development, current state, prospects]. Moscow, Nauka Publ., 1985. 143 p. (In Russ.).