Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Authors: Shkinyov V.M., Saprykin O.A., Nosov V.N. | Published: 04.05.2024 |
Published in issue: #5(770)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: autonomous underwater vehicle, hydrogen sulfide dissociation, hydrogen fuel cells, metal hydride battery, power plants, swarms of autonomous underwater vehicles |
The paper considers a possibility of increasing the autonomous underwater vehicle power resource using the marine environment sources (water-soluble gases and gas hydrates) and resulting in the hydrogen production for the electric batteries. It proposes a design for the autonomous underwater vehicle based on the cavitation effects, where Laval nozzle, membranes and gas photochemical decomposition (for example, hydrogen sulfide) are used to produce hydrogen. Estimates of increase in the cruising range of an autonomous underwater vehicle are provided with the hydrogen extracted from water. Increase in the cruising range could reach several hundred kilometers (hundreds of nautical miles). In addition to the mobile autonomous underwater vehicles, the paper proposes to create stationary power plants at depth; they would be functioning on the similar operation principles. In case of the stationary power plants, introduction of the rising water flows from the sea depth is proposed to rotate the impeller blades. The stationary power plants could be able to provide recharging of drones such as the autonomous underwater vehicles with hydrogen or directly with electricity. Combination of underwater drones and power plants at depth would make it possible to comprehensively study the seabed and protect the important underwater objects.
EDN: WRHGYQ, https://elibrary/wrhgyq
References
[1] Bocharov L. Unmanned underwater vehicles. Their status and general development trends. Elektronika: Nauka, Tekhnologiya, Biznes [Electronics: Science, Technology, Business], 2009, no. 7, pp. 62–69. (In Russ.).
[2] Filippov S., Golodnitskiy A. Fuel cells and hydrogen energy. Energeticheskaya politika [Energy Policy], 2020, no. 11, pp. 28–39. (In Russ.).
[3] Akhmedov R.B., Kirichenko O.V. Sposob dobychi serovodoroda iz morskoy vody i ustroystvo dlya ego osushchestvleniya [Method and device for recovering hydrogen sulfide from sea water]. Patent RU 1799365. Appl. 10.014.1991, publ. 28.02.1993. (In Russ.).
[4] Akhmedov R.B., Kirichenko O.V. Sposob dobychi serovodoroda iz morskoy vody i ustroystvo dlya ego osushchestvleniya [Method and device for recovering hydrogen sulfide from sea water]. Patent SU 1799365. Appl. 10.04.1991, publ. 28.02.1993. (In Russ.).
[5] Ivanov A.N. Gidrodinamika razvitykh kavitatsionnykh techeniy [Hydrodynamics of developed cavitation currents]. Leningrad, Sudostroenie Publ., 1980. 237 p. (In Russ.).
[6] Fedotkin I.M., Gulyy I.S. Kavitatsiya, kavitatsionnaya tekhnika i tekhnologiya, ikh ispolzovanie v promyshlennosti. Ch. 1 [Cavitation, cavitation technique and technology, their use in industry. P. 1]. Kiev, Poligrafkniga Publ., 1997. 839 p. (In Russ.).
[7] Kirillov A.I., Rotinyan E.M. Mekhanika zhidkosti i gaza. Soplo Lavalya [Mechanics of liquid and gas. Laval nozzle]. Sankt-Petersburg, Praktikum Publ., 2017. 21 p. (In Russ.).
[8] Voropaev S.A., Dnestrovskiy A.Yu., Skorobogatskiy V.N. et al. Experimental study into the formation of nanodiamonds and fullerenes during cavitation in an ethanol–aniline. Doklady Akademii nauk, 2014, vol. 459, no. 2, pp. 162–165, doi: https://doi.org/10.7868/S0869565214320127 (in Russ.). (Eng. version: Dokl. Phys., 2014, vol. 59, no. 2, pp. 503–506, doi: https://doi.org/10.1134/S102833581411007X)
[9] Alekin O.A., Lyakhin Yu.I. Khimiya okeana [Ocean chemistry]. Leningrad, Gidrometeoizdat Publ., 1984. 344 p. (In Russ.).
[10] Driver R.B., Fletcher E.A. Hydrogen and sulfur from N2S. The economics of quench process. Energy, 1985, vol. 10, no. 7, pp. 831–842, doi: https://doi.org/10.1016/0360-5442(85)90116-1
[11] Savinov E.N., Gruzdikov Yu.A., Paramon V.N. Suspensions of semiconductors with microhetero-junctions — a new type of highly efficient photocatalysts for hydrogen production from aqueous solutions of hydrogen sulfide or sulfidione. Khimicheskaya fizika, 1988, vol. 7, no. 8, pp. 1070–1081. (In Russ.).
[12] Znak Z.O., Yavorskiy V.T., Olenych R.R. [Hydrogen production in polymer sulphur technology]. Vodorodnaya energetika budushchego i metally platinovoy gruppy v stranakh SNG [Hydrogen Energy of the Future and Platinum Group Metals in CIS Countries]. Moscow, MIREA Publ., 2005, pp. 206–209. (In Russ.).
[13] Grishin S.G., Kalinnikov A.A., Krasnoshtanov V.F. et al. Experimental study of hydrogen sulfide radiolysis. VANT. Ser. Atomno-vodorodnaya energetika i tekhnologiya, 1987, no. 2, pp. 43–44. (In Russ.).
[14] Kurochkin A.K., Motin N.V., Alekseev S.Z. et al. Cavitation conversion of gas condensate fuel oil into diesel-gasoline distillates. Sphere, oil and gas, 2018, no. 2 (64), pp. 64–74.
[15] Kulagin V.A. Metody i sredstva tekhnologicheskoy obrabotki mnogokomponentnykh sred s ispolzovaniem effektov kavitatsii. Avtoref. diss. dok. tekh. nauk [Methods and means of technological processing of multicomponent media using cavitation effects. Abs. doc. tech. sci. diss.]. Krasnoyarsk, KGTU Publ., 2004. 48 p. (In Russ.).
[16] Karpov D.A., Litunovskiy V.N. Vodorodnaya energetika: khranenie vodoroda v svyazannom sostoyanii. Obzor O-106 [Hydrogen energy: hydrogen storage in bound state. Review O-106.]. Sankt-Petersburg, Rosatom, AO NIIEFA Publ., 2016. 94 p. (In Russ.).
[17] Tarasov B.P., Kagan K.L., Fursikov P.V. et al. Metallogidridnyy akkumulyator vodoroda mnogokratnogo deystviya s uluchshennym teploobmenom [Metal hydrogen battery of hydrogen repeated action with improved heat exchange]. Patent RU 167781. Appl. 27.11.2015, publ. 10.01.2017. (In Russ.).
[18] Karpov D.A., Litunovskiy V.N. Akkumulyator dlya khraneniya vodoroda v svyazannom sostoyanii i kartridzh dlya akkumulyatora [Accumulator for hydrogen storage in bound state and accumulator cartridge]. Patent RU 2606301. Appl. 27.05.2015, publ. 10.01.2017. (In Russ.).
[19] Website of OOO «Gidrogenius». URL: http://www.promnavigator.ru (accessed: 10.10.2023). (In Russ.).