Influence of the upper-rotor device with axial and inclined grooves on the axial-flow pump cavitation characteristics
Authors: Shoronov S.V., Kazennov I.S., Istomin E.A. | Published: 04.10.2024 |
Published in issue: #10(775)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: axial-flow pump, upper-rotor device, axial grooves, inclined upper-rotor grooves, cavitation characteristics, pressure characteristic delay |
The paper presents results of the experimental study of an axial-flow pump with the upper-rotor device in the form of axial and inclined grooves. It demonstrates influence of their number, length and angle of inclination on the cavitation characteristics. In the overwhelming majority of cases, pressure characteristics of the pumps with axial impellers have the non-monotonic curves complicating their design and regulation processes. This problem is of theoretical and practical interest, since ensuring the monotonically decreasing pressure characteristic of an axial-flow pump is one of the most important goals in designing and optimizing the unit. Upper-rotor devices with the axial or inclined grooves positioned relative to the pump rotor rotation axis could be introduced to create the monotonically decreasing pressure characteristics. However, the upper-rotor device influence on the cavitation characteristics was not sufficiently studied. Cavitation characteristics of an axial-flow pump with an upper-rotor device were experimentally obtained, and the obtained results were analyzed. Using an upper-rotor device with the axial or inclined grooves improves the pump anti-cavitation quality at low flow rates, but worsens it at the high flow rates. For certain designs in length, number and slope of the grooves, no influence on the anti-cavitation qualities was identified.
EDN: HBNLOU, https://elibrary/hbnlou
References
[1] Kivchenko G.I. Nasosy i gidroturbiny [Pumps and hydroturbines]. Moscow, Energiya Publ., 1970. 448 p. (In Russ.).
[2] Svoboda D.G., Zharkovskiy A.A. Proektirovanie osevykh nasosov s nezapadayushchey napornoy kharakteristikoy [Design of axial flow pumps with non-declining discharge characteristic]. Sankt-Petersburg, Politekh-Press Publ., 2021. 182 p. (In Russ.).
[3] Svoboda D.G., Zharkovskiy A.A. Influence of parameters on the prognostic characteristics of the axial pump with specific speed ns = 570. Nauchno-tekhnicheskie vedomosti SPbGPU, 2013, no. 4–1, pp. 111–119. (In Russ.).
[4] Lomakin A.A. Tsentrobezhnye i osevye nasosy [Centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1966. 363 p. (In Russ.).
[5] Gryanko L.P., Papir A.N. Lopastnye nasosy [Vane pumps]. Leningrad, Mashinostroenie Publ., 1975. 432 p. (In Russ.).
[6] Zimnitskiy V.A., Kaplun A.V., Papir A.N. et al. Lopastnye nasosy [Vane pumps]. Leningrad, Mashinostroenie Publ., 1986. 334 p. (In Russ.).
[7] Shoronov S.V., Kazennov I.S., Istomin E.A. Influence of the upper-rotor device on the axial flow pump head characteristics. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2024, no. 5, pp. 78–89, EDN: QVANMJ, https://elibrary/qvanmj (In Russ.).
[8] Goltz I., Kosyna G., Delgado A. Eliminating the head instability of an axial-flow pump using axial grooves. Proc. Inst. Mech. Eng. A, 2012, vol. 227, no. 2, pp. 206–215, doi: https://doi.org/10.1177/0957650912466033
[9] Perez Flores P., Kosyna G., Wulff D. Suppression of performance curve instability of an axial-flow pump by using a double-inlet-nozzle. Int. J. Rotating Mach., 2008, vol. 2008, art. 536850.
[10] Choi Y.D., Kurokawa J., Imamura H. Suppression of cavitation in inducers by J-grooves. J. Fluids Eng., 2007, vol. 129, no. 1, pp. 15–22, doi: https://doi.org/10.1115/1.2375126
[11] Goltz I., Kosyna G., Wulff D. et al. Structure of the rotor tip flow in a highly loaded single-stage axial-flow pump approaching stall: Part II — Stall inception — understanding the mechanism and overcoming its negative impacts. ASME 2004 Heat Transfer/Fluids Engineering Summer Conf., 2004, pp. 301–306, doi: https://doi.org/10.1115/HT-FED2004-56770
[12] Kosyna G., Goltz I., Stark U. Flow structure of an axial-flow pump from stable operation to deep stall. ASME 2005 Fluids Engineering Division Summer Meeting, 2005, pp. 1389–1396, doi: https://doi.org/10.1115/FEDSM2005-77350
[13] Mu T., Zhang R., Xu H. et al. Study on improvement of hydraulic performance and internal flow pattern of the axial flow pump by groove flow control technology. Renew. Energ., 2020, vol. 160, pp. 756–769, doi: https://doi.org/10.1016/j.renene.2020.06.145
[14] Tkach P.Yu. Vpliv nadrotornikh elementіv shneku na kavіtatsіynoerozіynі yakostі shnekovovіdtsentrovogo stupenya nasosa. Diss. kand. tekh. nauk [Influence of screw supra-rotor elements on cavitation and erosion qualities of a centrifugal pump stage. Kand. tech. sci. diss.]. Sumy, Sumskiy derzhavniy unіversitet Publ., 2018. 134 p. (In Russ.).
[15] Ankudinov A.A., Zubov A.A., Misyagina Yu.Yu. Avtomatizirovannyy raschet i proektirovanie osevikhrevoy stupeni nasosa [Automated calculation and design of axial vortex pump stage]. Kaluga, Manuskript Pibl., 2019. 23 p. (In Russ.).
[16] Ankudinov A.A., Vashchenko A.V. Axial-vortex stage application prospects in turbo-pumps of liquid propellant rocket engines. Vestnik MAI [MAI Aerospace Journal], 2021, vol. 28, no. 3, pp. 17–23, doi: https://doi.org/10.34759/vst-2021-3-17-23 (in Russ.).
[17] Borovskiy B.I., Ershov N.S., Ovsyannikov B.V. et al. Vysokooborotnye lopatochnye nasosy [High-speed vane pumps]. Moscow, Mashinostroenie Publ., 1975. 336 p. (In Russ.).
[18] Chebaevskiy V.F., Petrov V.I. Kavitatsionnye kharakteristiki vysokooborotnykh shneko-tsentrobezhnykh nasosov [Cavitation characteristics of high-speed screw-centrifugal pumps]. Moscow, Mashinostroenie Publ., 1973. 152 p. (In Russ.).
[19] Almazov A.A., Drozdov Z.T., Lysov E.N. et al.Kavitatsionnoe vibronagruzhenie vysokooborotnykh osevykh nasosov [Cavitation vibration loading of high-speed axial flow pumps]. V: Kavitatsionnye kolebaniya i dinamika dvukhfaznykh system [In: Cavitation vibrations and dynamics of two-phase systems]. Kiev, Naukova dumka Publ., 1985, pp. 41–47. (In Russ.).
[20] Brennen C.E. Cavitation and bubble dynamics. Oxford University Press, 1995. 294 p.
[21] Carpenter S.H. Performance of cavitating axial inducers with varying tip clearance and solidity. California Institute of Technology, 1957. 79 p.
[22] Kazennov I.S. Prognozirovanie i upravlenie kavitatsionnymi kharakteristikami busternykh osediagonalnykh nasosov kislorodno-kerosinovykh ZhRD s ispolzovaniem chislennogo modelirovaniya. Diss. kand. tekh. nauk [Prediction and control of cavitation characteristics of booster axial-diagonal pumps of oxygen-kerosene LDEs using numerical modelling. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2017. 109 p. (In Russ.).