Mathematical model of the process of gas pumping by a multi-nozzle supersonic vacuum ejector
Authors: Ochkov A.A., Khamadi M.I. | Published: 11.12.2024 |
Published in issue: #12(777)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: multi-nozzle supersonic ejector, mathematical model, ejector working processes, pumping speed of ejector |
Currently, vacuum ejectors are used in various industries due to a number of advantages. However, classic single-nozzle ejector configurations have a number of disadvantages that limit their application in various installations. A mathematical model of the gas pumping process by a multi-nozzle supersonic vacuum ejector has been developed. The calculation scheme, accepted assumptions and main calculation dependencies used in the mathematical model of the working process of a multi-nozzle supersonic ejector are presented, and also a program for calculating the pumping speed of a multi-nozzle supersonic vacuum ejector and block diagram of this program have developed. Conclusions have been made.
EDN: UWGLHV, https://elibrary/uwglhv
References
[1] Tsegelskiy V.G. Struynye apparaty [Jet apparatuses]. Moscow, Bauman MSTU Publ., 2017. 789 p. (In Russ.).
[2] Jielin Luo, Guangming Chen et al. Analysis on the optimal mixing pressure and efficiency limit of an ideal ejector. Energy Reports, vol. 7, 2021, pp. 4335–4347, doi: https://doi.org/10.1016/j.egyr.2021.07.024
[3] Sokolov E.Ya., Zinger N.M. Struynye apparaty [Jet apparatuses]. Moscow, Energiya Publ., 1970. 287 p. (In Russ.).
[4] Frolov E.S., ed. Vakuumnaya tekhnika [Vacuum technique]. Moscow, Mashinostroenie Publ., 1985. 359 p. (In Russ.).
[5] Khristianovich S.A. O raschete ezhektora [On calculation of an ejector]. V: Promyshlennaya aerodinamika [In: Industrial aerodynamics]. Moscow, Izd-vo BNT NKAP Publ., 1944, pp. 3–17. (In Russ.).
[6] Millionshchikov M.D., Ryabinkov G.M. Gazovye ezhektory bolshikh skorostey. V: Sbornik rabot po issledovaniyu sverkhzvukovykh gazovykh ezhektorov. Moscow, BNI TsAGI, 1961, pp. 5–32. (In Russ.).
[7] Malkov B.M., Emelyanova A.V. Efficient multi-nozzle ejector: the impact of working channel configuration on its performance. Aerokosmicheskaya tekhnika i tekhnologii [Aerospace Engineering and Technology], 2023, vol. 1, no. 1, pp. 131–148. (In Russ.).
[8] Yuetong Shu, Jia Yan. Thermodynamic modeling and performance optimization of transcritical CO2 dual-evaporator refrigeration system enhanced with ejectors. Appl. Therm. Eng., 2024, vol. 249, doi: https://doi.org/10.1016/j.applthermaleng.2024.123433
[9] Sadeghiseraji, Jaber & Garcia-Vilchez, Mercè & Castilla, Robert & Raush, Gustavo. Recent Advances in Numerical Simulation of Ejector Pumps for Vacuum Generation—A Review. Energies, vol. 17, p. 29, doi: 10.3390/en17174479
[10] Yadav, Surendra and Pandey, Krishna and Gupta, Rajat. Recent advances on principles of working of ejectors: A review. Materials Today: Proceedings. 2020, vol. 45, p. 9, doi: https://doi.org/10.1016/j.matpr.2020.10.736
[11] Zhu Y., Cai W., Wen C. et al. Numerical investigation of geometry parameters for design of high performance ejectors. Appl. Therm. Eng., 2009, vol. 29, no. 5–6, pp. 898–905, doi: https://doi.org/10.1016/j.applthermaleng.2008.04.025
[12] Bourhan M. Tashtoush, Moh’d A. Al-Nimr, Mohammad A. Khasawneh. A comprehensive review of ejector design, performance, and applications. Applied Energy, vol. 240, 2019, pp. 138–172, doi: https://doi.org/10.1016/j.apenergy.2019.01.185
[13] Gerald Singer, Rafael Pinsker et al. Ejector validation in proton exchange membrane fuel cells: A comparison of turbulence models in computational fluid dynamics (CFD) with experiment. International Journal of Hydrogen Energy, vol. 61, 2024, pp. 1405–1416, doi: https://doi.org/10.1016/j.ijhydene.2024.02.365
[14] Wei Lu, Hongjie Chen. Design of cylindrical mixing chamber ejector according to performance analyses. Energy, vol. 164, 2018, pp. 594–601, doi: https://doi.org/10.1016/j.energy.2018.09.025
[15] Hadi Samsam-Khayani, Sang Youl Yoon et al. Experimental and numerical study on low-temperature supersonic ejector. International Journal of Thermofluids, 2023, vol. 20, doi: https://doi.org/10.1016/j.ijft.2023.100407
[16] Giorgio Besagni, Nicolò Cristiani et al. Computational fluid-dynamics modelling of supersonic ejectors: Screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies. Appl. Therm. Eng., 2021, vol. 186, doi: https://doi.org/10.1016/j.applthermaleng.2020.116431
[17] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow, Nauka Publ., 1976. 824 p. (In Russ.).