Development of a prototype of the piston hybrid energy machine of volumetric action with the regenerative heat exchange and a bench for its study
Authors: Nosov E.Y., Shcherba V.E., Kuzhbanov A.K., Kudentsov V.Y., Galdin N.S., Gildebrandt M.I. | Published: 12.02.2025 |
Published in issue: #2(779)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: piston hybrid power machine, regenerative heat exchange, prototype, experimental bench |
The article considers the piston hybrid power machines with regenerative heat exchange having the high mass-dimensional parameters and implementing the most efficient methods in heat removal using the regenerative heat exchange. Based on the previously proposed method of the liquid cooling system operation in a piston compressor, a prototype of the piston hybrid power machine of volumetric action with the regenerative heat exchange was created, as well the bench for its study. The bench allows for prompt and accurate measurement of the main thermodynamic parameters that directly affect the working processes of this machine, as well as for measuring its main integral characteristics. Using the created prototype and the experimental bench for its study, it is planned to confirm results of the previously performed theoretical studies under the Grant of the Russian Science Foundation (No. 22-29-00399) and obtain new knowledge on operation of the piston hybrid power machine of volumetric action with the regenerative heat exchange.
EDN: CMEQDO, https://elibrary/cmeqdo
References
[1] Shcherba V.E., Bolshtyanskii A.P., Kaigorodov S.Yu. et al. Benefits of integrating displacement pumps and compressors. Russ. Engin. Res., 2016, vol. 36, no. 3, pp. 174–178, doi: https://doi.org/10.3103/S1068798X1603014X`
[2] Shcherba V.E., Pavlyuchenko E.A., Kuzhbanov A.K. Mathematical modeling of processes of suction and discharge in a displacement pump with gas damper. Khimicheskoe i neftegazovoe mashinostroenie, 2013, no. 7, pp. 26–30. (In Russ.). (Eng. version: Chem. Petrol. Eng., 2013, vol. 49, no. 7–8, pp. 460–466, doi: https://doi.org/10.1007/s10556-013-9774-9)
[3] Bazhenov A.M., Shcherba V.E., Shalay V.V. et al. Mathematical modeling of the working processes of a piston hybrid energy machine of volumetric action with a slotted step seal. Vestnik mashinostroeniya, 2019, no. 2, pp. 55–60. (In Russ.).
[4] Shcherba V.E., Shalay V.V., Kondyurin A.Yu. et al. Development and research of an experimental sample of a piston hybrid energy machine. Vestnik mashinostroeniya, 2019, no. 8, pp. 12–17. (In Russ.).
[5] Shcherba V.E., Tegzhanov A.S., Nosov E.Yu. et al. Comparative analysis of mass-dimensional a comparative analysis of mass-dimensional indicators of crossheadless and crosshead piston hybrid energy positive displacement machines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2019, no. 9, pp. 88–95, doi: http://doi.org/10.18698/0536-1044-2019-9-88-95 (in Russ.).
[6] Shcherba V.E., Shalai V.V., Tegzhanov A.S. et al. Generalized comparative analysis of crosshead-free and crosshead schemes of piston hybrid power machines. J. Mech. Sci. Technol., 2020, vol. 34, no. 12, pp. 5093–5107, doi: http://doi.org/10.1007/s12206-020-1113-4
[7] Shcherba V.E., Nosov E.Yu., Tegzhanov A.S. et al. An experimental study of a crossheadless piston hybrid power positive displacement machine with intensive cooling of the compressed gas. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2019, no. 10, pp.78–85, doi: http://doi.org/10.18698/0536-1044-2019-10-78-85 (in Russ.).
[8] Shcherba V.E., Paramonov A.M., Blinov V.N. et al. Comparative analysis of process of cooling of compressible gas in crosshead and crossheadless hybrid positive-displacement piston power machines. Chem. Petrol. Eng., 2020, vol. 55, no. 9–10, pp. 733–742, doi: http://doi.org/10.1007/s10556-020-00687-x
[9] Shcherba V.E., Aver’yanov G.S., Kalekin V.S. et al. Calculation of rational values of discharge pressures in the compressor and pump sections of a crossheadless reciprocating hybrid power machine. Chem. Petrol. Eng., 2018, vol. 54, no. 5–6, pp. 418–424, doi: http://doi.org/10.1007/s10556-018-0496-x
[10] Lobov I.E., Shcherba V.E. Development and calculation of a liquid cooling system for a piston compressor using pressure fluctuations during gas discharge. Chem. Petrol. Eng., 2016, vol. 52, no. 3–4, pp. 251–259, doi: http://doi.org/10.1007/s10556-016-0183-8
[11] Shcherba V.E., Lobov I.E., Bolshtyanskiy A.P. et al. Sposob raboty porshnevoy mashiny i ustroystvo dlya ego osushchestvleniya [Piston machine operation method and device for its implementation]. Patent RU 2592661. Appl. 21.04.2015, publ. 27.07.2016. (In Russ.).
[12] Shcherba V.E., Nosov E.Yu., Pavlyuchenko E.A. et al. Analysis of fluid dynamics in a piston hybrid power machine with gas volume at suction. Khimicheskoe i neftegazovoe mashinostroenie, 2016, no. 4, pp. 15–19. (In Russ.).
[13] Shcherba V.E., Bolshtyanskiy A.P., Kuzeeva D.A. et al. Sposob raboty mashiny obemnogo deystviya i ustroystvo dlya ego osushchestvleniya [Method of operating volumetric action machine and device therefor]. Patent RU 2578776. Appl. 03.04.2015, publ. 27.03.2016. (In Russ.).
[14] Shcherba V.E., Ovsyannikov A.Yu., Bolshtyanskiy A.P. et al. Porshnevoy dvukhtsilindrovyy kompressor s avtonomnym zhidkostnym okhlazhdeniem [Two-cylinder reciprocating compressor with autonomous liquid cooling]. Patent RU 2755967. Appl. 20.11.2020, publ. 23.09.2021. (In Russ.).
[15] Tegzhanov A.S., Shcherba V.E., Bolshtyanskiy A.P. Porshnevoy kompressor s avtonomnym zhidkostnym rubashechnym okhlazhdeniem [Reciprocating compressor with self-contained liquid jacket cooling]. Patent RU 2784267. Appl. 29.07.2022, publ. 23.11.2022. (In Russ.).
[16] Shcherba V.E., Ovsyannikov A.Yu., Nosov E.Yu. et al. An analysis of the cooling intensity effect of a two-cylinder single-stage piston hybrid power machine with fluid flow due to vacuum at suction on the working processes and indicative efficiency. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 11, pp. 62–72, doi: http://doi.org/10.18698/0536-1044-2020-11-62-72 (in Russ.).
[17] Shcherba V.E., Averyanov G.S., Korneev S.A. et al. An analysis of various cooling liquids in a two-cylinder single-stage piston hybrid power machine with fluid flow due to vacuum at suction based on experimental results. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 12, pp. 40–49, doi: http://doi.org/10.18698/0536-1044-2020-12-40-49 (in Russ.).
[18] Shcherba V.E., Tegzhanov A.S., Orekh D.V. Analysis of the reverse expansion process in a reciprocating hybrid power machine with two suction valves. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 9, pp. 77–85, doi: http://doi.org/10.18698/0536-1044-2021-9-77-85 (in Russ.).
[19] Shcherba V.E., Bolshtyanskiy A.P., Azyabin Z.V. et al. Sposob raboty sistemy zhidkostnogo okhlazhdeniya mashiny obemnogo deystviya i ustroystvo dlya ego osushchestvleniya [Method for operation of the liquid cooling system of the positive displacement machine and the device for its implementation]. Patent RU 2763099. Appl. 18.03.2021, publ. 27.12.2021. (In Russ.).
[20] Shcherba V.E., Khodoreva E.V., Bolshtyanskiy A.P. Sposob raboty porshnevogo kompressora s regenerativnym okhlazhdeniem i ustroystvo dlya ego osushchestvleniya [Method of operation of reciprocating compressor with regenerative cooling and device for its implementation]. Patent RU 2801766. Appl. 14.10.2022, publ. 15.08.2023. (In Russ.).
[21] Bolshtyanskiy A.P., Shcherba V.E. Sposob raboty porshnevogo kompressora i ustroystvo dlya ego osushchestvleniya (varianty) [Method of piston compressor operation and device for implementation thereof (embodiments)]. Patent RU 2818615. Appl. 15.03.2023, publ. 03.05.2024. (In Russ.).
[22] Shcherba V.E. Method for estimating the operating time in the compressor mode of a reciprocating hybrid power machine with regenerative heat exchange. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 10, pp. 96–102, doi: http://doi.org/10.18698/0536-1044-2022-10-96-102 (in Russ.).
[23] Shcherba V.E., Dorofeev E.A. Determination of the areas of the main operational parameters of a reciprocating hybrid power machine with regenerative heat exchange. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 11, pp. 69–77, doi: http://doi.org/10.18698/0536-1044-2022-11-69-77 (in Russ.).
[24] Shcherba V.E. Procedure for estimating the heating time of working chamber walls in a piston compressor when implementing regenerative heat exchange. Chem. Petrol. Eng., 2022, vol. 58, no. 3–4, pp. 293–300, doi: http://doi.org/10.1007/s10556-022-01090-4
[25] Shcherba V.E. Preliminary crankshaft speed assessment for a reciprocating hybrid power machine with regenerative heat transfer in compressor and pump modes. Russ. Engin. Res., 2023, vol. 43, no. 5, pp. 529–533, doi: http://doi.org/10.3103/S1068798X23050556
[26] Shcherba V.E., Khait A., Nosov E.Yu. et al. Numerical analysis of unsteady heat transfer in the chamber in the piston hybrid compressor with regenerative heat exchange. Machines, 2023, vol. 11, no. 3, art. 363, doi: https://doi.org/10.3390/machines11030363
[27] Shcherba V.E. Calculation and analysis of compression and expansion in a piston hybrid power machine with regenerative heat exchange in pump mode. Heat Mass Transfer, 2024, vol. 60, no. 2, pp. 395–404, doi: https://doi.org/10.1007/s00231-023-03435-y
[28] Plastinin P.I. Porshnevye kompressory. T. 1. Teoriya i raschet [Piston compressors. Vol. 1. Theory and calculation]. Moscow, Kolos Publ., 2006. 456 p. (In Russ.).
[29] Fotin B.S., ed. Porshnevye kompressory [Piston compressors]. Leningrad. Mashinostroenie Publ., 1987. 372 p. (In Russ.).
[30] Shcherba V.E. Calculation and analysis of discharge and suction processes in a positive displacement hybrid reciprocating power machine with regenerative heat exchange. Chem. Petrol. Eng., 2023, vol. 59, no. 5–6, pp. 498–510, doi: http://doi.org/10.1007/s10556-024-01267-z
[31] Shcherba V.E. Operating speeds of a hybrid reciprocating power unit in compressor and pump modes. Russ. Engin. Res., 2023, vol. 43, no. 8, pp. 914–921, doi: http://doi.org/10.3103/S1068798X23080300
[32] Kulebyakin V.V. Metody i pribory dlya izmereniya davleniya [methods and devices for pressure measurement]. Minsk, BNTU Publ., 2015. 36 p. (In Russ.).
[33] Bashta T.M. Obemnye nasosy i gidravlicheskie dvigateli gidrosistem [Volumetric pumps and hydraulic motors of hydraulic systems]. Moscow. Mashinostroenie Publ., 1974. 606 p. (In Russ.).