Accounting for the gas velocity criterion in constructing a simplified schematized indicator diagram of the real compressor
Authors: Kobylsky R.E., Busarov S.S., Busarov I.S. | Published: 10.04.2025 |
Published in issue: #4(781)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: indicator diagram, gas velocity criterion, average pressure loss, suction valves, discharge valves |
The paper analyzes the gas velocity criterion influence on the average gas pressure loss in the gas distribution systems. It presents a comparative analysis of the simplified schematized diagrams constructed using a standard method of computing gas pressure losses in the valves and accounting for the gas velocity criterion. The results obtained indicate that the error in computing the gas pressure loss taking into account the gas velocity criterion compared to the standard method is on the average 5.57 %, which could be a significant value when computing the high-performance compressors. The paper indicates that for the suction valves, the average gas loss taking into account the gas velocity criterion is by 3.6…7.2 % higher than without it. For the discharge valves, accounting for the gas velocity criterion turns out to be less expressive. The paper notes that with the gas velocity criterion of 0.10…0.14, the average gas pressure loss computed with this criterion would be greater than the values obtained using the standard method, and at the velocity of 0.16…0.22, they would be less.
EDN: GGVPPC, https://elibrary/ggvppc
References
[1] Ochkov A.A. Prospects for developing modern high-vacuum mechanical pumps. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2022, no. 1, pp. 103–137, doi: https://doi.org/10.18698/0236-3941-2022-1-103-137 (in Russ.).
[2] Nikitin O.F. Effect of throttle output pressure on discharge coefficients. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 6, pp. 125–138, doi: https://doi.org/10.18698/0236-3941-2018-6-125-138 (in Russ.).
[3] Shcherba V.E. Teoriya, raschet i konstruirovanie porshnevykh kompressorov obemnogo deystviya [Theory, calculation and design of reciprocating positive displacement compressors]. Moscow, Yurayt Publ., 2023. 323 p. (In Russ.).
[4] Pronin V.A., Kovanov A.V., Tsvetkov V.A. et al. Assessment of the influence of gap wall mobility factor at calculation of leakage in working section of a scroll compressor. Part 1. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2023, vol. 7, no. 1, pp. 9–17, doi: https://doi.org/10.25206/2588-0373-2023-7-1-9-17 (in Russ.).
[5] Isaev A.A., Raykov A.A., Burmistrov A.V. et al. Study of the backward flow in Roots-type vacuum pump with elliptical rotor profile in the gas flow molecular regime. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 4, pp. 38–45, doi: https://doi.org/10.18698/0536-1044-2023-4-38-45 (in Russ.).
[6] Grezin A.K., Zinovyev V.S. Mikrokriogennaya tekhnika [Microcryogenic technique]. Moscow, Mashinostroenie Publ., 1977. 232 p. (In Russ.).
[7] Yusha V.L., Busarov S.S. et al. Experimental study of working processes of low-speed long-stroke lubrication free piston compressor stages at high discharge pressure to suction pressures. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2018, vol. 2, no. 2, pp. 13–18, doi: https://doi.org/10.25206/2588-0373-2018-2-2-13-18 (in Russ.).
[8] Busarov S.S., Goshlya R.Yu., Gromov A.Yu. et al. Mathematical modelling of heat exchange processes in the working chamber of a low-speed stage of a reciprocating compressor. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2016, no. 6, pp. 6–10. (In Russ.).
[9] Arkharov A.M. et al. Kriogennye porshnevye detandery [Cryogenic reciprocating piston detanders]. Moscow, Mashinostroenie Publ., 1974. 240 p. (In Russ.).
[10] Dorofeev E.A., Tegzhanov A.Kh.S., Shcherba V.E. The analysis of pumpless cooling systems reciprocating compressors. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2023, vol. 7, no. 1, pp. 32–39, doi: https://doi.org/10.25206/2588-0373-2023-7-1-32-39 (in Russ.).
[11] Nedovenchanyi A.V., Yusha V.L., Busarov S.S. Experimental evaluation of the efficiency of long-stroke, low-speed reciprocating compressor stages in compression of different gases. Chem. Petrol. Eng., 2018, vol. 54, no. 4, pp. 593–597, doi: https://doi.org/10.1007/s10556-018-0520-1
[12] Novikov I.I., ed. Bessmazochnye porshnevye uplotneniya v kompressorakh [Lubricant-free piston seals in compressors]. Leningrad, Mashinostroenie Publ., 1981. 238 p. (In Russ.).
[13] Yusha V.L., Busarov S.S., Gromov A.Yu. Assessment of the prospects of development of medium-pressure single-stage piston compressor units. Chem. Petrol. Eng., 2017, vol. 53, no. 3, doi: https://doi.org/10.1007/s10556-017-0362-2
[14] Omran M., Zharkovskiy A.A., Shchur V.A. et al. Technique for designing and optimization of the Francis turbine blade system. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2023, vol. 7, no. 1, pp. 47–54, doi: https://doi.org/10.25206/2588-0373-2023-7-1-47-54 (in Russ.).
[15] Yusha V.L., Gromov A.Yu., Ushakov P.V. The analysis of influence of temperature conditions of piston long-stroke compressor stage on thermodynamic efficiency of a heat pump. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2023, vol. 7, no. 1, pp. 18–25, doi: https://doi.org/10.25206/2588-0373-2023-7-1-18-25 (in Russ.).