Influence of the design parameters and dimensions on the stationary elements efficiency in the centrifugal compressors
Authors: Galerkin Y.B., Marenina L.N., Semenovskiy V.B., Solovyeva O.A., Rekstin A.F., Drozdov A.A. | Published: 19.04.2025 |
Published in issue: #4(781)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: centrifugal compressor, reverse guide vane, loss coefficient, stationary elements efficiency |
Object of the study includes stationary elements of the intermediate type stages consisting of a vaneless diffuser and the reverse guide vane. It is known that the CFD computation of a vaneless diffuser could be efficiently used in the design and development. CFD optimization results with regard to a reverse guide vane are confirmed experimentally. The paper uses in computation the universal simulation method, where the flow part shape is determined by the two main design parameters, i.e. the flow rate and pressure coefficients. Optimization and computation in the ANSYS CFX software package are used to study the stationary elements with the flow rate of 0.015 ... 0.150 and the pressure coefficient of 0.45 ... 0.70. The paper provides efficiency characteristics of the optimized stationary elements and determines the design parameters influence on the design mode efficiency. The inlet angle of blades of the optimized reverse guide vanes, especially in the low-flow stages (flow rate coefficient of less than 0.040), is significantly smaller than that of the known analogs. The flow structure in the optimized reverse guide vanes of the low-flow stages is not favorable enough (significant separation zones are observed on the blades). Studying stationary elements of the low-flow stages would be continued. If the results are confirmed experimentally, the stationary elements design would become more reliable, and efficiency of the intermediate stages would increase.
EDN: FGYHZN, https://elibrary/fgyhzn
References
[1] Borovkov A.I., Voinov I.B., Nikitin M.A. et al. Performance modeling for a single-stage pipeline centrifugal compressor. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2018, vol. 24, no. 3, pp. 153–175, doi: https://doi.org/10.18721/JEST.240313 (in Russ.).
[2] Marenina L.N., Galerkin Yu.B., Drozdov A.A. et al. Positive experience of CFD-simulatin of centrifugal compressor stage characteristics and parasitic loss analysis. Part 1. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2022, no. 2, pp. 18–25. (In Russ.).
[3] Solovyeva O., Drozdov A. Mathematical model of centrifugal compressor vaneless diffuser based on CFD calculations. E3S Web Conf., 2020, vol. 178, art. 01014, doi: https://doi.org/10.1051/e3sconf/202017801014
[4] Marenina L., Galerkin Yu., Drozdov A. Stator elements optimization of centrifugal compressor intermediate type stage by CFD methods. E3S Web Conf., 2020, vol. 178, art. 01020, doi: https://doi.org/10.1051/e3sconf/202017801020
[5] De Bellis F., Guidotti E., Tommaso Rubino D. Centrifugal compressors return channel optimization by means of advanced 3D CFD. Proc. ASME, 2015, vol. 2C, paper GT2015-44143, doi: https://doi.org/10.1115/GT2015-44143
[6] Franz H., Rube C., Wedeking M. et al. Numerical investigation of the return channel of a high-flow centrifugal compressor stage. Proc. ASME, 2015, vol. 2C, paper GT2015-43640, doi: https://doi.org/10.1115/GT2015-43640
[7] Jariwala V., Larosiliere L., Hardin J. Design exploration of a return channel for multistage centrifugal compressors. Proc. ASME, 2016, vol. 2D, paper GT2016-57777, doi: https://doi.org/10.1115/GT2016-57777
[8] Ji C., Li C., Fang J. et al. Loss mechanism of static interstage components of multistage centrifugal compressors for integrated blade design. Math. Probl. Eng., 2018, doi: https://doi.org/10.1155/2018/9025650
[9] Bisping J., Rossbach T., Gratesand D. et al. Influence of diffuser diameter ratio on the performance of a return channel within a centrifugal compressor stage. GPPS, 2018. URL: https://zenodo.org/records/1343352 (accessed: 15.06.2024).
[10] Nishida Y., Kobayashi H., Nishida H. et al. Performance improvement of a return channel in a multistage centrifugal compressor using multiobjective optimization. J. Turbomach., 2013, vol. 135, no. 3, art. 031026, doi: https://doi.org/10.1115/1.4007518
[11] Rube C., Rossbach T., Wedeking M. et al. Experimental and numerical investigation of the flow inside the return channel of a centrifugal process compressor. J. Turbomach., 2016, vol. 138, no. 10, art. 101006, doi: https://doi.org/10.1115/1.4032905
[12] Yagi M., Nishioka T., Kobayashi H. et al Effects of return channel with splitter vanes on performance of multistage centrifugal compressor. Proc. ASME, 2015, vol. 2C, paper GT2015-42442, doi: https://doi.org/10.1115/GT2015-42442
[13] Galerkin Yu.B., Marenina L.N., Soldatova K.V. et al. Numerical simulation and optimization of return channels of centrifugal compressor stages of different specific speed. AIP Conf. Proc., 2021, vol. 2412, no. 1, art. 030018, doi: https://doi.org/10.1063/5.0075058
[14] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnye kompressory [Centrifugal compressor]. Leningrad, Mashinostroenie Publ., 1982. 271 p. (In Russ.).
[15] Soldatova K.V. Sozdanie novoy matematicheskoy modeli protochnoy chasti tsentrobezhnykh kompressorov i bazy dannykh modelnykh stupeney. Diss. kand. tekh. nauk [Creation of a new mathematical model of the centrifugal compressor flow section and a database of model stages. Kand. tech. sci. diss.]. Sankt-Petersburg, SPbPU Publ., 2017. 357 p. (In Russ.).
[16] Soldatova K.V. Databank of model stages, with the characteristics calculated by results of production tests of centrifugal compressors. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2016, no. 8, pp. 20–24. (In Russ.).
[17] Drozdov A.A. Razrabotka matematicheskoy modeli rascheta i proektirovaniya tsentrobezhnykh kompressorov na osnove raschetno-eksperimentalnykh issledovaniy i ee prakticheskoe primenenie. Diss. dok. tekh. nauk [Development of a mathematical model for calculation and design of centrifugal compressors on the basis of design and experimental studies and its practical application. Doc. tech. sci. diss.]. Sankt-Petersburg, SPbPU Publ., 2021. 440 p. (In Russ.)
[18] Drozdov A.A., Galerkin Yu.B., Solovyeva O.A. et al. Mathematical model of the 9th version Universal modeling method: features and results of identification. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2020, vol. 4, no. 4, pp. 28–40, doi: https://doi.org/10.25206/2588-0373-2020-4-4-28-40 (in Russ.).
[19] Rekstin A.F., Soldatova K.V., Galerkin Yu.B. Experience of application the computer program based on a simplified mathematical model for industrial centrifugal compressors candidates. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 604, art. 012405, doi: https://doi.org/10.1088/1757-899X/604/1/012045
[20] Rekstin A., Popova E., Ucehovscy A. Centrifugal compressor stages efficiency analysis by means of the approximate algebraic equations. AIP Conf. Proc., 2018, vol. 2007, no. 1, art. 030036, doi: https://doi.org/10.1063/1.5051897
[21] Rekstin A.F., Galerkin Y.B. Low-flow rate centrifugal compressor stages primary design specificity. Bulletin PNRPU. Mechanical engineering, materials science, 2018, vol. 20, no. 2, pp. 43–54, doi: 10.15593/2224-9877/2018.2.06
[22] Galerkin Yu.B., Rekstin A.F., Solovyeva O.A. Vaneless diffuser of the centrifugal compressor stage design method. AIP Conf. Proc., 2019, vol. 2141, no. 1, doi: https://doi.org/10.1063/1.5122057