Theoretical analysis of the temperature conditions for a long-stroke low-speed piston compressor stage under the intensive external cylinder cooling and increased gas temperature at the standard suction point
Authors: Yusha V.L., Busarov S.S. | Published: 19.04.2025 |
Published in issue: #4(781)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: piston compressor stage, mathematical model, suction temperature, average discharge temperature, quasi-isothermal compression process, subisothermal compression process |
The paper considers relationship between the temperature at the end of the compression process and the gas average discharge temperature at the compression process start and at the standard suction point for the different cylinder diameters and working cycle periods for a long-stroke low-speed piston compressor stage. The theoretical analysis results prove a fundamental possibility of implementing the subisothermal compression process for small cylinder diameters, where the working gas temperature at the end of the compression process is lower than at the beginning, and the conventional polytropic index of the compression process is less than one. The compression process is quasi-isothermal in nature with the compression conventional polytropic index slightly exceeding one, which corresponds to the previously obtained results. The average discharge temperature in this case is significantly lower than the temperature at the standard suction point, which reflects features of the stage under consideration and makes it possible to assume a possibility of its use as a booster without preliminary cooling the suction gas, including as part of the mobile compressor systems.
EDN: VCHJVU, https://elibrary/vchjvu
References
[1] Katalog produktsii Nevyanskogo mashinostroitelnogo zavoda [Catalog of products of Nevyansky machine-building plant]. nmz-group.ru: website. URL: https://nmz-group.ru/catalog/kompressornye-stantsii/ (accessed: 20.10.2024). (In Russ.).
[2] Katalog produktsii Chelyabinskogo kompressornogo zavoda [Product catalog of Chelyabinsk compressor plant]. chkz.ru: website. URL: https://www.chkz.ru/catalog/Diesel-generator-installations/ (accessed: 20.10.2024). (In Russ.).
[3] Katalog produktsii UKZ. ukz.ru: website. URL: https://www.ukz.ru/ (accessed: 20.10.2024). (In Russ.).
[4] Katalog produktsii Krasnodarskogo kompressornogo zavoda [Product catalog of the Chelyabinsk compressor plant]. kkzav.ru: website. URL: https://kkzav.ru/ (accessed: 20.10.2024). (In Russ.).
[5] Yusha V.L. [Tendencies of perfection of air and specialized technological compressor units on the basis of automobile chassis intended for operation in conditions of Siberia and Far North]. Avtomobili. Spetsialnye i tekhnologicheskie mashiny dlya Sibiri i Kraynego Severa. Mat. 59-y Mezhd. nauch.-tekh. konf. AAI [Automobiles. Special and Technological Machines for Siberia and the Far North. Proc. 59th Int. Sci. Tech. AAI Conf.]. Omsk, 2007, pp. 296–303. (In Russ.).
[6] Yusha V.L. Sozdanie i sovershenstvovanie stupeney kompressorov obemnogo deystviya dlya avtonomnykh mobilnykh ustanovok. Diss. dok. tekh. nauk [Creation and perfection of the stages of the compressors of the volumetric action for the autonomous mobile installations. Doc. tech. sci. diss.]. Moscow, 2008. 434 p. (In Russ.).
[7] Federalnye normy i pravila v oblasti promyshlennoy bezopasnosti «Obshchie pravila vzryvobezopasnosti dlya vzryvopozharoopasnykh khimicheskikh i neftepererabatyvayushchikh proizvodstv» [Federal norms and rules in the field of industrial safety “General rules of explosion safety for explosion and fire hazardous chemical and oil refining industries”]. Prikaz ot 15.12.2020 g. no. 533 Federalnoy sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru [Order of 15.12.2020 № 533 of the Federal Service for Environmental, Technological and Nuclear Supervision.]. (In Russ.).
[8] GOST R 54802–2011 (ISO 13631:2002). Neftyanaya i gazovaya promyshlennost. Kompressory porshnevye gazovye agregatirovannye [State standstd R 54802-2011 (ISO 13631:2002). Petroleum and natural gas industries. Packaged reciprocating gas compressors. Technical requirements]. Moscow, Standartinform Publ., 2014. 83 p. (In Russ.).
[9] Vidyakin Yu.A., Dobrovolskiy E.B., Kondratyeva T.F. Oppozitnye kompressory [Opposite compressors]. Leningrad, Mashinostroenie Publ., 1979. 279 p. (In Russ.).
[10] Plastinin P.I. Porshnevye kompressory. T. 1. Teoriya i raschet [Piston compressors.Т.1. Theory and calculation.]. Moscow, KolosS Publ., 2006. 456 p. (In Russ.).
[11] Prilutskiy I.K., Molodova Yu.I., Galyaev P.O. et al. Peculiarities of heat exchange processes in the stages of small-scale machines of volume action with different mechanisms of movement. Vestnik Mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2017, no. 4, pp. 30–40, doi: https://doi.org/10.21047/1606-4313-2017-16-4-30-40 (in Russ.).
[12] Prilutskiy I.K., Kazimirov A.V., Molodova Yu.I. et al. Mobile compressor stations. Prospect development. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2019, no. 1, pp. 24–30. (In Russ.).
[13] Prilutskiy I.K., Naumchik I.V., Kazimirov A.V. et al. The effect of the internal heat-exchange surface of the cylinders in the reciprocating compressors with crank-and-rod and linear drive. Vestnik Mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2022, no. 1, pp. 11–25, doi: https://doi.org/10.17586/1606-4313-2022-21-1-11-25 (in Russ.).
[14] Vasilyev Yu.S., Petrenya Yu.K., Soldatova K.V. et al. Trudy politekhnicheskoy nauchnoy shkoly turbokompressorostroeniya 21 veka [Proceedings of the Polytechnic Scientific School of Turbocompressor Engineering of the 21st Century]. Sankt-Petersburg, Politekh-Press Publ., 2023. 384 p. (In Russ.).
[15] Yusha V.L., Sutyaginskiy M.A., Gromov A.Yu. et al. On the relationship of digital technological platforms of large chemical and oil refining industries with the technical appearance of the compressor equipment fleet. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2023, vol. 7, no. 4, pp. 25–32, doi: https://doi.org/10.25206/2588-0373-2023-7-4-25-32 (in Russ.).
[16] Busarov S.S., Belikov A.V., Kapelyukhovskiy A.A. et al. Analysis of the competitiveness of hydrogen-containing circulation compressors based on low-speed long-stroke stages. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2023, no. 1, pp. 499–503. (In Russ.).
[17] Yusha V.L. Scientific and technological prerequisites for improvement and industrial development of low-flow compressor units based on long-stroke piston stages. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2022, vol. 6, no. 3, pp. 24–39, doi: https://doi.org/10.25206/2588-0373-2022-6-3-24-39 (in Russ.).
[18] Yusha V.L., Novikov D.G. Intensification of heat exchange processes in the working chamber of oil-free compressors. Vestnik Mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2004, no. 4, pp. 8–11. (In Russ.).
[19] Yusha V.L., Busarov S.S., Novikov D.G. Influence of microfmning to heat dissipation flash co-efficient in work chamber of oilfree piston compressor. Khimicheskoe i neftegazovoe mashinostroenie [Chemical and Petroleum Engineering], 2007, no. 11, pp. 19–21. (In Russ.).
[20] Busarov S.S. Povyshenie effektivnosti kompressornogo oborudovaniya dorozhno-stroitelnykh mashin. Diss. kand. tekh. nauk [Increase of efficiency of compressor equipment of road-building machines. Kand. Tech. sci. diss.]. Omsk, SibADI Publ., 2008. 212 p. (In Russ.).
[21] Novikov D.G. Razrabotka konstruktsiy i metoda rascheta porshnevykh kompressornykh mashin s orebrennoy nesmazyvaemoy rabochey kameroy. Diss. kand. tekh. nauk [Development of constructions and calculation method of the piston compressor machines with the finned non-lubricated working chamber. Kand. Tech. sci. diss.]. Omsk, 2009. 194 p. (In Russ.).
[22] Busarov S.S., Yusha V.L., Karagusov V.I. [Theoretical analysis of the existing methods of modeling of working processes in relation to low-speed long-stroke stages of reciprocating compressors]. Tr. XVI Mezhd. nauch.-tekh. konf. po kompressorostroeniyu. T. 1 [Proc. XVI Int. Sci. Tech. Conf. on Compressor Engineering. Vol. 1]. Sankt-Petersburg, 2014, pp. 70–81. (In Russ.).
[23] Yusha V.L., Den’gin V.G., Busarov S.S. et al. The estimation of thermal conditions of highly-cooled long-stroke stages in reciprocating compressors. Procedia Eng., 2015, vol. 113, pp. 264–269, doi: https://doi.org/10.1016/j.proeng.2015.07.333
[24] Yusha V.L., Karagusov V.I., Busarov S.S. Modeling the work processes of slow-speed, long-stroke piston compressors. Chem. Petrol. Eng., 2015, vol. 51, no. 3, pp. 177–182, doi: https://doi.org/10.1007/s10556-015-0020-5
[25] Yusha V.L., Busarov S.S., Gromov A.Y. Assessment of the prospects of development of medium-pressure single-stage piston compressor units. Chem. Petrol. Eng., 2017, vol. 53, no. 7-8, pp. 453–458, doi: https://doi.org/10.1007/s10556-017-0362-2
[26] Gromov A.Yu. Razrabotka porshnevykh stupeney s lineynym privodom dlya maloraskhodnykh kompressornykh agregatov i issledovanie ikh rabochikh protsessov. Diss. kand. tekh. nauk [Development of piston stages with linear drive for low-flow compressor units and study of their operating processes. Kand. tech. sci. diss.]. Omsk, 2017. 213 p. (In Russ.).
[27] Prilutskiy I.K., Kazimirov A.V., Molodova Yu.I. et al. Prediction of the parameters for the experimental stage of the compressor with a linear drive and a variable cylinder diameter when operating as a part of electrochemical air regeneration systems. Vestnik Mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2021, no. 4, pp. 18–29, doi: https://doi.org/10.17586/1606-4313-2021-20-4-18-29 (in Russ.).
[28] Kapelyukhovskaya A.A., Chernov G.I., Gromov A.Yu. et al. Theoretical analysis of expansion process of wet water vapor in working chamber of piston long-stroke linear drive of compressor unit. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2022, vol. 6, no. 1, pp. 35–43. (In Russ.).
[29] Nedovenchanyy A.V. Povyshenie energeticheskoy i dinamicheskoy effektivnosti porshnevogo maloraskhodnogo odnostupenchatogo kompressornogo agregata s lineynym privodom. Diss. kand. tekh. nauk [Increase of energy and dynamic efficiency of piston low-flow single-stage compressor unit with linear drive. Kand. Tech. sci. diss]. Omsk, OmGTU Publ., 2020. 232 p. (In Russ.).
[30] Yusha V.L. Scientific and technological prerequisites for improvement and industrial development of low-flow compressor units based on long-stroke piston stages. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering.], 2022, vol. 6, no. 3, pp. 24–39, doi: https://doi.org/10.25206/2588-0373-2022-6-3-24-39 (in Russ.).
[31] Prilutskiy I.K., Naumchik I.V. Pomoshchnik M.V. et al. Forecast of the current and integral parameters of a compressor stage with linear drive with variable piston stroke and constant theoretical capacity. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2023, no. 3, pp. 6–12. (In Russ.).
[32] Busarov S.S. Sozdanie i sovershenstvovanie bessmazochnykh porshnevykh kompressorov srednego i vysokogo davleniya na baze maloraskhodnykh tikhokhodnykh dlinnokhodovykh stupeney. Diss. dok. tekh. nauk [Creation and improvement of grease-free reciprocating compressors of medium and high pressure on the basis of low-flow low-speed long stroke stages. Doc. Tech. sci. diss.]. Omsk, 2024. 325 p. (In Russ.).
[33] Kalekin V.S., Kalekin V.V., Kalekin D.V. Porshnevoy pnevmodvigatel [Piston pneumatic motor]. Patent RU 154841. Appl. 30.05.2014, publ. 10.09.2015. (In Russ.).
[34] Yusha V.L. Analysis of the thermodynamic efficiency of a theoretical multi-stage compressor with the combined use of adiabatic, isothermal and subisothermal compression processes. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2024, vol. 8, no. 4, pp. 29–38, doi: https://doi.org/10.25206/2588-0373-2024-8-4-29-38 (in Russ.).
[35] Busarov S.S., Kobylskiy R.E., Sinitsyn N.G. Theoretical assessment of possible reduction in mass leaks of working medium from a reciprocating compressor chamber. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2022, no. 2, pp. 101–111, doi: http://dx.doi.org/10.18698/0236-3941-2022-2-101-111 (in Russ.).
[36] Busarov S.S., Yusha V.L., Kobylskiy R.E. Experimental evaluation of effectiveness of lip seal of cylinder-piston group of long-stroke compressor stage. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Se. Aviation-Rocket and Power Engineering], 2020, vol. 4, no. 3, pp. 20–27, doi: https://doi.org/10.25206/2588-0373-2020-4-3-20-27 (in Russ.).
[37] Busarov I.S., Busarov S.S., Yusha V.L. The effect of deformation of flow part of elastomeric elements of self-acting valves on characteristics of low-speed long-stroke compressor stages. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Se. Aviation-Rocket and Power Engineering], 2021, vol. 5, no. 4, pp. 33–38, doi: https://doi.org/10.25206/2588-0373-2021-5-4-33-38 (in Russ.).
[38] Busarov S.S., Yusha V.L., Kobilsskiy R. ed. Comparative evaluation of methods for calculating the dynamics of self-acting valves in reciprocating compressor units. Chem. Petrol. Eng., 2020, vol. 56, no. 7–8, pp. 644–652, doi: https://doi.org/10.1007/s10556-020-00824-6
[39] Plastinin P.I., Yusha V.L., Busarov S.S. Analysis of changing temperature fields in walls of compressor’s stage cylinder. Omskiy nauchnyy vestnik, 2006, no. 5, pp. 96–101. (In Russ.).
[40] Yusha V.L., Busarov S.S., Krinitskiy V.I. Investigation of heat transfer processes in the piston compressor stage at asymmetric temperature field. Izvestiya Vuzov. Gornyy zhurnal [Minerals and Mining Engineering], 2007, no. 6, pp. 59–66. (In Russ.).
[41] Busarov S.S. Povyshenie effektivnosti kompressornogo oborudovaniya dorozhno-stroitelnykh mashin. Diss. kand. tekh. nauk [Increase of efficiency of compressor equipment of road-building machines. Kand. Tech. sci. diss.]. Omsk, SibADI Publ., 2008. 213 p. (In Russ.).
[42] Bosnjakovic F., Knoche K.F. Technische Thermodynamik. Teil I. Darmstadt, Steinkopff, 1998. 531 p.
[43] Kirillin V.A., Sychev V.V., Sheyndlin A.E. Tekhnicheskaya termodinamika [Technical thermodynamics]. Moscow, Energoatomizdat Publ., 1983. 416 p. (In Russ.).
[44] Zakhrebetkov Yu.A. Thermodynamic process at variable amount of working body. Teploenergetika, 1970, no. 8, pp. 70–72. (In Russ.).
[45] Kovlyachenko N.N. Thermodynamic relations taking into account the influence of gas leaks on the compressor indicator diagrams. Izvestiya Vuzov. Gornyy zhurnal [Minerals and Mining Engineering], 1969, no. 11, pp. 109–112. (In Russ.).
[46] Solozhentsev E.D., Sidorenko A.F. Identifikatsiya skhematizirovannogo tsikla porshnevogo kompressora [Identification of the schematized cycle of a reciprocating compressor]. V: Konstruirovanie, issledovanie, tekhnologiya i organizatsiya proizvodstva kompressornykh mashin [In: Design, research, technology and production organization of compressor machines]. Sumy, Trudy VNIIkompressormash Publ., 1978, pp. 3–7. (In Russ.).