Effect of the multiphase stage flow path dimensions on the bubble diameter in a gas-liquid mixture
Authors: Trulev A.V., Timushev S.F., Lomakin V.O., Shmidt E.M., Klipov A.V. | Published: 18.06.2025 |
Published in issue: #6(783)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: multiphase stages, gas-liquid mixture, flow path, helical blades, local multiphase separation coefficient, relative slip velocity |
The paper presents equations that are making it possible to assess an increase in the free gas bubbles average diameter under the action of centrifugal and Coriolis forces during the gas-liquid mixture motion in the impeller channels of the centrifugal, diagonal and axial stages. An increase in pressure, length, number of blades in the impeller and in the free gas bubbles average diameter at the inlet leads to the growing separation in the radial and tangential directions, free gas concentration in separate areas and, ultimately, to coalescence and increase in the bubbles average diameter. An increase in the working fluid flow rate and viscosity leads to a decrease in these processes. When designing and developing the multiphase pumps, these systems should be multistage, with short stages having a relatively low pressure, and, accordingly, small radial overall dimensions. The smaller the stage diametrical and axial dimensions, the better for its operation on a gas-liquid mixture. The paper shows that the diagonal-type multiphase stages with the inclined-cylindrical and helical blades compared to the axial-type stages in the operating range have higher pressure when working on liquid without gas and gas-liquid mixture, especially in the multistage design. However, the relative decrease in pressure when operating on the gas-liquid mixture is higher for the diagonal-type stages. A multiphase pump should have several stages when operating on the coarsely dispersed gas-liquid mixtures and using the high-pressure diagonal stages.
EDN: TKBZPM, https://elibrary/tkbzpm
References
[1] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [Technology and technique of oil production by submergible pumps in the complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[2] Dengaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey [Increase of well operation efficiency by submersible centrifugal pumps during pumping of gas-liquid mixtures]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2005. 212 p. (In Russ.).
[3] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian installations of vane pumps for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[4] Vakhitova R.I., Saracheva D.A., Urazakov D.R. et al. Povyshenie effektivnosti raboty pogruzhnykh elektrotsentrobezhnykh ustanovok pri dobyche nefti s vysokim gazosoderzhaniem [Improving the efficiency of submersible electric centrifugal units in oil production with high gas content.]. Almetyevsk, AGNI Publ., 2019. 104 p. (In Russ.).
[5] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptualno novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and test output introduction of ESP of conceptually new construction for exploitation of low-debit well with high content free gas and mechanical impurities]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Collection of works by laureates of the international contest of scientific, technical and innovative developments aimed at the development of fuel and energy and extractive industry]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[6] Trulev A.V., Timushev S.F., Shmidt E.M. Features of ESP gas separator bench tests for oil production purposes. Neft. Gaz. Novatsii, 2020, no. 7, pp. 62–69. (In Russ.).
[7] Trulev A.V., Timushev S.F., Lomakin V.O. Conceptual features of the method of bench testing of gas separators for submersible electric centrifugal pumps for oil production. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 11–27. (In Russ.).
[8] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[9] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Improving the multiphase stages flow path using the multiphase coefficient of the discrete particles relative speed. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 9, pp. 72–87, doi: http://dx.doi.org/10.18698/0536-1044-2023-9-72-87 (in Russ.).
[10] Musinskiy A.N. Razrabotka i issledovanie vikhrevykh gazoseparatorov dlya vysokodebitnykh skvazhin. Diss. kand. tech. nauk [Development and research of vortex gas separators for high-yield wells. Kand. tech. sci. diss.]. Perm, PNIPU Publ., 2021. 172 p. (In Russ.).
[11] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[12] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[13] Trulev A., Kayuda M., Timushev S. et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012042, doi: https://doi.org/10.1088/1757-899X/779/1/012042
[14] Cheremushkin V., Lomakin V., Kalin N. et al. Development and research of a borehole centrifugal pump stage. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012055, doi: https://doi.org/10.1088/1757-899X/779/1/012055
[15] Lyapkov P.D. Movement of a spherical particle relative to the liquid in the inter-blade channel of a centrifugal pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).
[16] Soo S. Fluid dynamics of multiphase systems. Blaisdell, 1967. 524 p. (Russ. ed.: Gidrodinamika mnogofaznykh sistem. Moscow, Mir Publ., 1971. 536 p.)
[17] Mishchenko I.T. Skvazhinnaya dobycha nefti [Borehole oil production]. Moscow, Neft i gaz Publ., 2003. 816 p. (In Russ.).
[18] Kutateladze S.S., Styrikovich M.A. Gidravlika gazozhidkostnykh system [Hydraulics of gas-liquid systems]. Moscow-Leningrad, Gosenergoizdat Publ., 1958. 232 p. (In Russ.).
[19] Podvidz L.G., ed. Metodicheskoe posobie po raschetu shneko-tsentrobezhnoy stupeni nasosa [Methodical guide for calculation of screw-centrifugal pump stage]. Moscow, Bauman MSTU Publ., 1975. 64 p. (In Russ.).
[20] Lomakin V.O., Petrov A.I., Kuleshova M.S. Investigation of two-phase flow in axial-centrifugal impeller by hydrodynamic modeling methods. Nauka i obrazovanie: nauchnoe izdanie [Science and Education of the Bauman MSTU], 2014, no. 9. EDN: TDPOJT (In Russ.).
[21] Pfleiderer C. Die Kreiselpumpen f?r Fl?ssigkeiten und Gase. Springer, 1961. 622 p. (Russ. ed.: Lopatochnye mashiny dlya zhidkostey i gazov. Moscow, Mashgiz Publ., 1960. 683 p.)
[22] Lomakin V.O., Kuleshova M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[23] Lomakin V.O., Kuleshova M.S., Kraeva E.A. Fluid flow in the throttle channel in the presence of cavitation. Procedia Eng., 2015, vol. 106, pp. 27–35, doi: https://doi.org/10.1016/j.proeng.2015.06.005
[24] Gouskov A.M., Lomakin V.O., Banin E.P. et al. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Biomed. Eng., 2017, vol. 51, pp. 229–233, doi: https://doi.org/10.1007/s10527-017-9720-9
[25] Zharkovskii A., Svoboda D., Borshchev I. et al. Axial-flow pump with enhanced cavitation erosion resistance. Energies, 2023, vol. 16, no. 3, art. 1344, doi: https://doi.org/10.3390/en16031344
[26] Klimenko D.V. Metodika rascheta pulsatsiy davleniya v shnekotsentrobezhnom nasose ZhRD trekhmernym akustiko-vikhrevym metodom. Diss. kand. tekh. nauk [Methodology of calculation of pressure pulsations in a screw-centrifugal pump of a liquid-propellant rocket engine by the three-dimensional acoustic-vortex method. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2016. 98 p. (In Russ.).