Computing main elements of a cyclone-type desender flow part using the local multiphase separation coefficient
Authors: Trulev A.V., Timushev S.F., Lomakin A.V., Klipov A.V., Zhukova T.V., Kagirov R.A. | Published: 17.07.2025 |
Published in issue: #7(784)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: cyclone desender, mechanical impurities, flow part, fixed screw, multiphase coefficient, multiphase mixture |
Reliability of the submersible units with an electric centrifugal pump is increased by installing a cyclone-type desender at the inlet in the oil producing wells with high content of the mechanical impurities. Desender protects a submersible pump from mechanical impurities by separating and collecting them in a special container. The paper proposes an upgrade technique making it possible to determine the main geometric dimensions of the mechanical impurity separator (desender) parts. It derives formulas to establish speed, flow rate and shut-off pressure that are representing minimum values ??of the flow rate at the outlet from the auger, flow rate and hydraulic losses in the auger. With these formulas, complete separation of the solid particles, their collection and retention in a standard container are achieved for the multiphase mixtures with certain physical and chemical properties.
EDN: EVLDEI, https://elibrary/evldei
References
[1] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [Technology and technique of oil production by submergible pumps in the complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[2] Dengaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey [Increase of well operation efficiency by submersible centrifugal pumps during pumping of gas-liquid mixtures]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2005. 212 p. (In Russ.).
[3] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian installations of vane pumps for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[4] Yakimov S.B. Potential optimization of ESP wear resistance class at Orenburgneft JSC fields. Nauchno-tekhnicheskiy vestnik OAO «NK «Rosneft», 2015, № 3, s. 85–92. (In Russ.).
[5] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptualno novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and test output introduction of ESP of conceptually new construction for exploitation of low-debit well with high content free gas and mechanical impurities]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Collection of works by laureates of the international contest of scientific, technical and innovative developments aimed at the development of fuel and energy and extractive industry]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[6] Musinskiy A.N. Razrabotka i issledovanie vikhrevykh gazoseparatorov dlya vysokodebitnykh skvazhin. Diss. kand. tech. nauk [Development and research of vortex gas separators for high-yield wells. Kand. tech. sci. diss.]. Perm, PNIPU Publ., 2021. 172 p. (In Russ.).
[7] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[8] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[9] Trulev A., Kayuda M., Timushev S. et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012042, doi: https://doi.org/10.1088/1757-899X/779/1/012042
[10] Mishchenko I.T. Skvazhinnaya dobycha nefti [Borehole oil production]. Moscow, Neft i gaz Publ., 2003. 816 p. (In Russ.).
[11] Trulev A.V., Zhukova T.V., Kagirov R.A. et al. [Study on a new way of operation of submersible unit with downhole separator of mechanical impurities]. Rossiyskaya otraslevaya energeticheskaya konferenciya [Russian Industry Energy Conference]. URL: https://libgeo.ru/library/roek?product_id=25411&filter=303 (accessed: 21.02.2025). (In Russ.).
[12] Achour L., Speclin M., Belaidi I. et al. Numerical study of the performance loss of a centrifugal pump carrying emulsion. E3S Web Conf., 2021, vol. 321, art. 01010, doi: https://doi.org/10.1051/e3sconf/202132101010
[13] Achour L., Speclin M., Belaidi I. et al. Numerical assessment of the hydrodynamic behavior of a volute centrifugal pump handling emulsion. Entropy, 2022, vol. 24, no. 2, art. 221, doi: https://doi.org/10.3390/e24020221
[14] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Improving flow path of the cyclone-type desenders using the multiphase coefficient of the discrete particles relative speed. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 7, pp. 93–106, doi: https://doi.org/10.18698/0536-1044-2023-7-93-106 (In Russ.).
[15] Banjar H., Zhang H.Q. Experiments and emulsion rheology modeling in an electric submersible pump. Proc. Int. Petroleum Technology Conf., 2019, art. IPTC-19463-MS, doi: https://doi.org/10.2523/iptc-19463-ms
[16] Zharkovskii A., Svoboda D., Borshchev I. et al. Axial-flow pump with enhanced cavitation erosion resistance. Energies, 2023, vol. 16, art. 1344, doi: https://doi.org/10.3390/en16031344
[17] Anpina N.A., Kaplan A.L., Peshcherenko S.N. Submersible separators for solids management. Burenie i neft, 2011, no. 12, pp. 40–43. (In Russ.).
[18] Sabirov A.A. Bench tests of downhole separators of mechanical impurities.. Inzhenernaya praktika, 2011, no. 5, pp. 150–155. (In Russ.).
[19] Sabirov A.A., Bulat A.V., Zuev A.S. et al. Refinement of the bench testing methodology for downhole separators of mechanical impurities. Territoriya neftegaz, 2011, no. 2, pp. 22–25.
[20] Bulat A.V. Povyshenie effektivnosti raboty skvazhinnogo nasosnogo oborudovaniya za schet primeneniya separatorov mekhanicheskikh primesey. Diss. kand. tekh. nauk [Increasing efficiency of downhole pumping equipment through the use of mechanical impurities separators. Kand. tech. sci. diss.]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2013. 139 p. (In Russ.).
[21] Anpina N.A., Peshcherenko S.N. Mathematical modeling of solid particles motion in submersible separators. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2012, no. 2, pp. 62–68. (In Russ.).
[22] Novokreshchennykh D.V. [Evaluation of the effectiveness of the use of separators of mechanical impurities]. Mat. konf. Ekspluatatsiya oslozhnennogo fonda skvazhin [Proc. Conf. Operation of the Complicated fund of Eells]. Surgut, 2022. (In Russ.).
[23] Ivanovskiy V.N., Sabirov A.A., Bulat A.V. et al. Stend dlya provedeniya ispytaniy skvazhinnykh gazopesochnykh separatorov [Stand for testing of borehold gas and sand separators]. Patent RU 124497. Appl. 08.08.2012, publ. 27.01.2013. (In Russ.).
[24] Trulev A.V., Zhukov T.Yu. Method for testing separator of mechanical impurities — gas phase enlarger, and test bench for its implementation (versions). Patent RU 2825819. Appl. 27.02.2024, publ. 30.08.2024. (In Russ.).
[25] Soo S. Fluid dynamics of multiphase systems. Blaisdell, 1967. 524 p. (Russ. ed.: Gidrodinamika mnogofaznykh sistem. Moscow, Mir Publ., 1971. 536 p.)
[26] Lyapkov P.D. Movement of a spherical particle relative to the liquid in the inter-blade channel of a centrifugal pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).