Improving the Performance of the Hydraulic Drive of an All-Terrain Vehicle in Low Temperature Conditions
Authors: Tsvetkov M.V., Nikitin A.A. | Published: 05.04.2021 |
Published in issue: #5(734)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: travel motor, heating working fluid, all-terrain vehicle, transmission reliability, hydraulic oil, working fluid temperature |
Currently, 70 % of Russian localities with a population of 9 million people are not connected to the transport system of the country by paved roads, especially in the northern regions, where the ambient temperature in winter does not rise above -500C. Road transport accounts for the largest number of transported goods. One of the vehicles of this type is an all-terrain vehicle Trackol, designed to move on roads with a weak surface: on snow, swamp and soil cover of thawed taiga. The analysis of the vehicle Trackol operation has shown insufficient reliability of its transmission. Analysis of of using the vehicle Trackol showed insufficient reliability of its transmission. To improve the situation the mechanical transmission has been replaced with a hydraulic one, taking into account the main disadvantages associated with maintaining the cleanliness of the working fluid. A system for regulating the temperature of the working fluid in the hydraulic drive of an all-terrain vehicle has been developed. The design of the working fluid filter is proposed, allowing capturing not only dirt, but also moisture due to the use of polyvinylformal of the TPVF brand as the filter element material.
References
[1] Lyu L., Chen Z. Development of pump and valves combined hydraulic system for both high tracking precision and high energy efficiency. IEEE Trans. Ind. Electron., 2019, vol. 66, no. 9, pp. 7189?7198, doi: https://doi.org/10.1109/TIE.2018.2875666
[2] Semenov S., Kulakov D. Mathematical modeling of the mechanisms of volumetric hydraulic machines. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012042, doi: https://doi.org/10.1088/1757-899X/492/1/012042
[3] Panchenko A., Voloshina A., Kiurchev S., Titova O., Onopreychuk D., Safoniuk I., Pashchenko V., Radionov H., Golubok M. Development of the universal model of mechatronic system with a hydraulic drive. Eastern-European Journal of Enterprise Technologies, 2018, vol. 4, no. 7, pp. 51?60.
[4] Ivanov A.M., Kristal’nyy S.R., Popov N.V., Spinov A.R. Ispytaniya kolesnykh transportnykh sredstv [Tests on wheeled transport]. Moscow, MADI Publ., 2018. 124 p.
[5] Vaezi M., Deldar M., Izadian A. Hydraulic wind power plants: a nonlinear model of low wind speed operation. Trans. Control Syst. Technol., 2016, vol. 24, no. 5, pp. 1696–1704, doi: https://doi.org/10.1109/TCST.2015.2508964
[6] Vaezi M., Deldar M., Izadian A. Control of hydraulic wind power transfer system under wind and load disturbances. IEEE Trans. Ind. Appl., 2018, vol. 54, no. 4, pp. 3596?3603, doi: https://doi.org/10.1109/TIA.2018.2813970
[7] Liu Z., Yang G., Wei L., Yue D. Variable speed and constant frequency control of hydraulic wind turbine with energy storage system. Adv. Mech. Eng., 2017, vol. 9, no. 8, doi: https://doi.org/10.1177%2F1687814017715195
[8] GOST 17479.3—85. Masla gidravlicheskie. Klassifikatsiya i oboznachenie [State Standard 17479.3?85. Hydraulic oils. Classification and designation]. Moscow, Standartinform publ., 2011. 9 p.
[9] Lozovetskiy V.V. Gidro- i pnevmosistemy transportno-tekhnologicheskikh mashin [Hydro- and pneumo-systems of transport technological machines]. Sankt-Peterburg, Lan’ publ., 2012. 554 p.
[10] Dotsenko A.I., Buyanovskiy I.A. Osnovy tribotekhniki [Fundamentals of triboengineering]. Moscow, Infra-M publ., 2017. 336 p.
[11] Kaverzin S.V., Lebedev V.P., Sorokin E.A. Obespechenie rabotosposobnosti gidravlicheskogo privoda pri nizkikh temperaturakh [Providing performance capabilities of hydraulic drive at low temperatures]. Krasnoyarsk, Krasnoyar. un-t publ., 1997. 240 p.
[12] Programma podbora komponentov mul’tiplikatsionnoy gidravlicheskoy sistemy dlya ustanovok na osnove VIE. Svid. RF o gos. reg. progr. dlya EVM 2017612983 [Components selection program for multiplication hydraulic system for RES-based plants. RF software reg. sert. 2017612983].
[13] Vetrogenerator «Briz-5000» [«Briz-500» wind generator]. Available at: http://electrosfera.ru/%D0%B2%D0%B5%D1%82%D1%80%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80-%D0%B1%D1%80%D0%B8%D0%B7-5-%D0%BA%D0%B2%D1%82/ (accessed 15 December 2020).
[14] Generator peremennogo toka Mecc Alte S15W-45 [Mecc Alte S15W-45 AC generator]. Available at: http://meccalte-russia.ru/catalog/3000-s/mecc_alte_s15w-45/ (accessed 15 December 2020).
[15] Nikitin O.F. Rabochie zhidkosti gidroprivodov [Actuation fluids in hydraulic drives]. Moscow, Bauman MSTU publ., 2007. 152 p.
[16] Grinchar N.G., Zaytseva N.A. Osnovy gidroprivoda mashin. Ch. 2 [Fundamentals of machines hydraulic drives. P. 2]. Moscow, UMTs ZhDT publ., 2016. 565 p.
[17] Kaverzin S.V. Kursovoe i diplomnoe proektirovanie po gidroprivodu samokhodnykh mashin [Course and diploma project development on hydraulic drives and automotive vehicles]. Krasnoyarsk, Ofset publ., 1997. 384 p.
[18] GOST 686–2017. Rukava rezinovye vysokogo davleniya s metallicheskimi opletkami bez kontsevoy armatury. Tekhnicheskie usloviya [State Standard 686–2017. High-pressure rubber hoses with metal braids without end fittings. Specifications]. Moscow, Standartinform publ., 2017. 15 p.
[19] Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook on fluid resistance]. Moscow, Mashinostroenie publ., 1992. 672 p.