Modeling a Longitudinal-Torsional Transducer of an Ultrasonic Medical Instrument
Authors: Pyae P.A., Grigoriev Y.V. | Published: 15.04.2021 |
Published in issue: #5(734)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: spatial helical rod, longitudinal-torsional transducer, modal analysis, initial parameters method, natural frequency |
The article considers small vibrations of a spatial helical rod included in the longitudinal-torsional transducer of an ultrasonic medical instrument. An algorithm for determining the natural frequencies and waveforms of system vibrations by the method of initial parameters is developed. On the basis of this algorithm the real elastic element of the longitudinal-torsional transducer is calculated using the mathematical package MATLAB. The obtained natural frequencies allow ensuring the operation of the ultrasound medical instrument in the resonant mode.
References
[1] Kudryashev S.B. Solution to the problem of analysis and synthesis of longitudinal-torsion ultrasonic waveguide. Molodoy issledovatel’ Dona, 2018, no. 4(13), pp. 74–76. Available at: http://mid-journal.ru/upload/iblock/214/15_760_Kudryashev_74_76.pdf (accessed 15 December 2020).
[2] P’ya P’o Aung, Grigor’yev Yu.V. Chislennyy metod rascheta nelineynoy uprugoy kharakteristiki prodol’no-poperechnogo preobrazovatelya. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2020, no. 9, pp. 3–8.
[3] Cardoni A., Harkness P., Lucas M. Ultrasonic Rock Sampling Using Longitudinal-Torsional Vibrations. Physics Procedia, 2010, no. 3, pp. 125–134, doi: 10.1016/j.phpro.2010.01.018
[4] Rongqi Wang, Zhiwei Zhu, Qiang Liu, Xiaoqin Zhou. Compliant linear-rotation motion transduction element based on novel spatial helical flexure hinge. Mechanism and Machine Theory, 2015, no. 92, pp. 330–337, doi: 10.1016/j.mechmachtheory.2015.06.005
[5] Zhou G., Zhang Y., Zhang B. The Complex-mode Vibration of Ultrasonic Vi-bration Systems. Ultrasonics, 2002, vol. 40, pp. 907–911, doi: 10.1016/s0041-624x(02)00224-x
[6] Pyae Phyo Aung, Grigoryev Y.V. Waveguide modal analysis of the ultrasonic medical instrument. Journal of Physics: conference series, 2020, vol. 1479, no. 012121, doi: https://doi.org/10.1088/1742-6596/1479/1/012121
[7] Svetlitsky V.A. Engineering Vibration Analysis: Worked Problems. B. 2. Berlin, Springer, 2010. 343 p.
[8] Tarasova G.B., Dyudin B.V. Ultrasonic tool. Izvestiya YuFU. Tekhnicheskiye nauki, 2004, no. 1(36), pp. 122–126 (in Russ.).
[9] Biderman V.L. Mekhanika tonkostennykh konstruktsiy. Statika [Mechanics of thin-walled structures. Static]. Moscow, URSS publ., 2017. 485 p.
[10] Krasnorutskiy D.A., Levin V.E., Pustovoy N.V. Nonlinear dynamics of thin elastic rods. Nelineynyye kolebaniya mekhanicheskikh sistem. Tr. IX Vseross. nauch. konf. [Nonlinear oscillations of mechanical systems. Proceedings of the IX All-Russian Scientific Conference]. Nizhny Novgorod, Nash dom publ., 2012, pp. 557–565 (in Russ.).
[11] Naumov A.M. Primeneniye metoda posledovatel’nykh nagruzheniy pri reshenii zadach mekhaniki ploskikh sterzhney. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2016, no. 12, pp. 33–42, doi: 10.18698/0536-1044-2016-12-33-42
[12] Gavryushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennyy analiz ele-mentov konstruktsiy mashin i priborov [Numerical analysis of structural elements of machines and devices]. Moscow, Bauman Press, 2014. 479 p.
[13] Levin V.E., Pustovoy N.V. Mekhanika deformirovaniya krivolineynykh sterzhney [Mechanics of deformation of curved rods]. Novosibirsk, NSTU publ., 2008. 208 p.
[14] Svetlitsky V.A. Engineering Vibration Analysis: Worked Problems. B. 1. Berlin, Springer, 2004. 316 p.
[15] Akopyan B.V., Ershov Yu.A. Osnovy vzaimodeystviya ul’trazvuka s biologicheskimi ob”yektami. Ul’trazvuk v meditsine, veterinarii i eksperimental’noy biologii [Fundamentals of interaction of ultrasound with biological objects. Ultrasound in medicine, veterinary medicine and experimental biology]. Moscow, Bauman Press, 2005. 224 p.