Analysis of Fatigue Calculation Methods for Variable Loading Stationary Operating Modes to Validate Domestic CAE Software — APM StructFEM
Authors: Shelofast V.V., Rostovtsev M.Yu., Abdulkerimov I.D. | Published: 01.08.2021 |
Published in issue: #8(737)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: CAE-analysis, fatigue strength, durability, symmetric loading, asymmetric loading, reduction methods |
The paper introduces the results of studying the possibilities and accuracy of numerical solutions of fatigue strength in the domestic software product APM StructFEM and in the well-known ANSYS software, as well as the results of analytical calculations for similar cases. The analysis of the accuracy of the obtained solutions is carried out on the example of the analysis of a section of the pipeline, for different variants of loadings and for a combination of these loadings. The areas of the most effective solutions obtained for various methods of reducing the operating variable modes to sinusoidal loading are determined. The study is caused by the implementation in the Russian Federation of an import substitution program in the field of strategic technologies, which can rightfully include computer solutions for engineering analysis.
References
[1] Gallagher R.H. Finite element analysis. Fundamentals. Prentice-Hall, 1975. 416 p. (Russ. ed.: Metod konechnykh elementov. Osnovy. Moscow, Mir Publ., 1984. 425 p.)
[2] Bathe K.-J., Wilson E.L. Numerical methods in finite element analysis. Prentice-Hall, 1976. 528 p. (Russ. ed.: Chislennye metody analiza i metod konechnykh elementov. Moscow. Stroyizdat Publ., 1982. 447 p.)
[3] Zienkiewicz O.C., Morgan K. Finite elements and approximation. Dover Publications, 2006. 328 p. (Russ. ed.: Metod konechnykh elementy i approksimatsiya. Moscow, Mir Publ., 1986. 319 p.)
[4] Shelofast V., Abdurashitov A., Renev S., et al. Comparative analysis of ANSYS Mechanical APDL and APM Structure3D at using different solid finite elements. SAPR i grafika, 2018, no. 12, pp. 54–59. (In Russ.).
[5] ANSYS release 11.0. Documentation for ANSYS Workbench. ANSYS Inc., 2007.
[6] Berendeev N.N. Soprotivlenie ustalosti. Osnovy [Fatigue strength. Fundamentals]. Nizhniy Novgorod, Nizhegorodskiy gosuniversitet Publ., 2010. 65 p. (In Russ.)
[7] GOST 23207–78. Soprotivlenie ustalosti. Osnovnye terminy, opredeleniya i oboznacheniya [State standard 23207-78. Fatigue strength. Terms, definitions and symbols]. Moscow, Izd-vo standartov Publ., 1981. 48 p. (In Russ.).
[8] GOST 25.504–82. Raschety i ispytaniya na prochnost’. Metody rascheta kharakteristik soprotivleniya ustalosti [State standard 25.504-82. Strength calculation and testing. Methods of fatigue strength behaviour calculation]. Moscow, Izd-vo standartov Publ., 1982. 55 p. (In Russ.).
[9] Norton R.L. Machine design. Integrated approach. Prentice-Hall, 2000. 1078 p.
[10] Lee Y.L., Pan J., Hathaway R., et al. Fatigue testing and analysis. Theory and practice. Butterworth-Heinemann, 2004. 416 p.
[11] Berendeev N.N. Primenenie sistemy ANSYS k otsenke ustalostnoy dolgovechnosti [Using ANSYS system for assessment of fatigue endurance]. URL: http://www.unn.ru/pages/e-library/aids/2006/4.pdf (accessed: 15.05.2021). (In Russ.).
[12] Forrest P.G. Fatigue of metals. Pergamon Press, 1962. 425 p. (Russ ed.: Ustalost’ metallov. Moscow, Mashinostroenie Publ., 1968. 352 p.)
[13] Kogaev V.P. Raschety na prochnost’ pri napryazheniyakh, peremennykh vo vremeni [Strength calculations at time-variable stress]. Moscow, Mashinostroenie Publ., 1977. 232 p. (In Russ.).
[14] Birger I.A., Shorr B.F., Iosilevich G.B. Raschet na prochnost’ detaley mashin [Strength calculation of machine parts]. Moscow. Mashinostroenie Publ., 1993. 639 p. (In Russ.).
[15] Karzov G.P., Margolin B.Z., Shvetsova V.A. Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya [Physical-mechanical modeling of destruction process]. Sankt-Petersburg. Politekhnika Publ., 1993. 391 p. (In Russ.).