Pilot-Induced Oscillation Prevention During the Aircraft Landing
Authors: Zaytseva Yu.S., Kuznetsov N.V., Andrievsky B.R., Kudryashova E.V. | Published: 15.11.2021 |
Published in issue: #12(741)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: pilot-aircraft system, oscillation prevention, glissade, saturation, sensitivity function, excitation index |
The paper focuses on a manned aircraft landing control system. It is known that actuator level and rate limitations can cause pilot-induced oscillations. This phenomenon occurs during intensive pilot control in a closed-loop system under certain initiating conditions associated with both the influence of the external environment and changes in the system dynamics. Oscillations appear unintentionally and unexpectedly for the pilot, which jeopardizes flight safety. The study shows the possibility of preventing aircraft oscillations using the method of nonlinear correction of systems by sequential introduction of a pseudo-linear correcting device into the control loop, the phase-frequency characteristic of the device not depending on the amplitude of the input signal. The airplane-pilot closed-loop system for various parameters of the input signal is analyzed by calculating the generalized function of sensitivity and the excitation index. The results of the study are presented in the form of angle and the pitch rate time processes, and landing trajectories.
References
[1] McRuer D.T., Warner J.D., eds. Aviation safety and pilot control: understanding and preventing unfavorable pilot-vehicle interactions. National Academy Press, 1997. 220 p.
[2] Queinnec I., Tarbouriech S., Biannic J.-M., et al. Anti-Windup algorithms for pilot-induced-oscillation alleviation. AerospaceLab, 2017, no. 13, doi: https://doi.org/10.12762/2017.AL13-07
[3] Andrievsky B., Arseniev D.G., Kuznetsov N.V., et al. Pilot-induced oscillations and their prevention. Proc. CPS&C, 2019, pp. 108–123, doi: https://doi.org/10.1007/978-3-030-34983-7_11
[4] Andrievskiy B.R., Zaytseva Yu.S., Kudryashova E.V., et al. Methods for pilot-induced oscillation prevention. A survey. Differentsial’nye uravneniya i protsessy upravleniya [Differential Equations and Control Processes], 2020, no. 2. URL: https://diffjournal.spbu.ru/pdf/20208-jdecp-andrievsky.pdf (in Russ.).
[5] Andrievskiy B.R., Kuznetsov N.V., Leonov G.A. Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems. Izvestiya RAN. Teoriya i sistemy upravleniya, 2017, no. 3, pp. 118–134, doi: https://doi.org/10.7868/S0002338817030040 (in Russ.). (Eng. version: J. Comput. Syst. Sci. Int., 2017, vol. 56, no. 3, pp. 455–470, doi: https://doi.org/10.1134/S1064230717030042)
[6] Andrievsky B., Kravchuk K., Kuznetsov N.V., et al. Hidden oscillations in the closed-loop aircraft-pilot system and their prevention. IFAC-PapersOnLine, 2016, vol. 49, no. 14, pp. 30–35. URL: https://doi.org/10.1016/j.ifacol.2016.07.970
[7] Kuznetsov N.V. Theory of hidden oscillations and stability of control systems. Izvestiya RAN. Teoriya i sistemy upravleniya, 2020, no. 5, pp. 5–27, doi: https://doi.org/10.31857/S0002338820050091 (in Russ.). (Eng. version: J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 5, pp. 647–668, doi: https://doi.org/10.1134/S1064230720050093)
[8] Andrievsky B., Kudryashova E.V., Kuznetsov N.V., et al. Aircraft wing rock oscillations suppression by simple adaptive control. Aerosp. Sci. Technol., 2020, vol. 105, art. 10604, doi: https://doi.org/10.1016/j.ast.2020.106049
[9] Zaytseva Yu.S. [Self-oscillating elimination at remote control on unmanned aircraft]. Tr. 11-oy obshcheros. molodezh. nauch.-prakt. konf. Molodezh’. Tekhnika. Kosmos. T. 1 [Proc. 11th Russ. Youth Sci.-Pract. Conf. Youth. Technics. Space. Vol. 1]. Sankt-Petersburg, BGTU Voenmekh Publ., 2019, pp. 245–249. (In Russ.).
[10] Leonov G.A., Andrievskiy B.R., Kuznetsov N.V., et al. Control of aircraft with AW-compensation. Differentsial’nye uravneniya i protsessy upravleniya [Differential Equations and Control Processes], 2012, no. 3. https://diffjournal.spbu.ru/pdf/aw12.pdf (in Russ.).
[11] Smith J.W. Analysis of a longitudinal pilot-induced oscillation experienced on the approach and landing test of the space shuttle. NASA Technical memorandum 81366. NASA, 1981. 45 p.
[12] Popov E.P., ed. Nelineynye korrektiruyushchie ustroystva v sistemakh avtomaticheskogo upravleniya [Nonlinear correcting devices in automated control systems]. Moscow, Mashinostroenie Publ., 1971. 466 p. (In Russ.).
[13] Zel’chenko V.Ya., Sharov S.N. Nelineynaya korrektsiya avtomaticheskikh system [Nonlinear correction of automated systems]. Leningrad, Sudostroenie Publ., 1981. 167 p. (In Russ.).
[14] Zaytseva Yu.S. Pilot-induced oscillations prevention through the nonlinear correction method. Trudy MAI, 2021, no. 116. URL: http://trudymai.ru/published.php?ID=121102 (in Russ.).
[15] Efremov A.V., Zakharchenko V.F., Ovcharenko V.N., et al. Dinamika poleta [Flight dynamics]. Moscow, Mashinostroenie Publ., 2011. 776 p. (In Russ.).
[16] Efremov A.V. Sistema samolet-letchik. Zakonomernosti i matematicheskie modeli povedeniya letchika [Aircraft-pilot system. Flight laws and mathematical models]. Moscow, MAI Publ., 2017. 193 p. (In Russ.).
[17] Pavlov A., van den Wouw N. Convergent systems: nonlinear simplicity. In: Nonlinear systems. Springer, 2017, pp. 51–77.
[18] Fradkov A.L. Kibernetichekaya fizika: printsipy i primery [Cybernetical physics: principles and examples]. Sankt-Petersburg, Nauka Publ., 2003. 208 p. (In Russ.).