Determination of the thermal state of the elements of a piston engine turbocharger
Authors: Zadorozhnaya E.A., Hudyakov V.S., Sibiryakov S.V., Naprimerova E.D. | Published: 29.09.2022 |
Published in issue: #10(751)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: turbocharger rotor, heat transfer in the bearing housing, calculation of hydrodynamic characteristics, plain bearings |
The power boost of heat engines is conditioned by the increase in the load on all its elements and related units. The turbocharger is one of the most common units that provide the power boost of a heat engine. The reliability of the turbocharger and its tribo-couplings guarantees the stable operation of not only it, but also the machine as a whole. An increase in the rotor speed leads to an increase in the thermal loading of the turbocharger elements. In this regard, timely assessment of the thermal state of the tribocoupling components, temperature distribution over the shaft, housing and other elements of the turbocharger is an urgent task. An algorithm for calculating heat transfer between the elements of a turbocharger has been developed, and an assessment of the heat load of radial multilayer plain bearings of a flexible asymmetric rotor has been made. The simulation was carried out in the ANSYS Fluent software package. The experimental data of the manufacturing plant were used as boundary conditions. The results of the calculation are given: the distribution of thermal fields in the turbocharger housing and the temperature in the area of ??the turbine and compressor plain bearings. Dependences of temperatures in the bearing area on the rotor speed are obtained. The calculation results were verified by comparing the temperatures in the turbine and compressor plain bearings with the data given in the publications of other authors. The temperature values in the outer and inner layers of the bearing were the initial data for calculating the dynamics of the turbocharger rotor, taking into account the thermal deformations of the tribocouple elements. The results of the research will be used to assess the stability of the movement of the rotor, the failure-free operation of the bearing assembly, as well as the reliability and durability of the turbocharger as a whole.
References
[1] Turbocharger Market. alliedmarketresearch.com: website. URL: https://www.alliedmarketresearch.com/turbocharger-market (accessed: 15.06.2022).
[2] Dziubak T., Karzewski M. Operational malfunctions of turbochargers — reasons and consequences. Combustion Engines, 2016, vol. 164, no. 1, pp. 13–21.
[3] Why do turbochargers fail? garrettmotion.com: website. URL: https://www.garrettmotion.com/ru/news/newsroom/article/why-do-turbochargers-fail/#:~:text=Most%20failures%20are%20caused%20by,fitting%20usually%20causes%20oil%20starvation (accessed: 15.06.2022).
[4] Romagnoli A., Martinez-Botas R. Heat transfer on a turbocharger under constant load points. ASME Conf. Proc., 2009, paper GT2009-59618, pp. 163–174, doi: https://doi.org/10.1115/GT2009-59618
[5] Deng D., Shi F., Begin L., Du I. The effect of oil debris in turbocharger journal bearings on sub synchronous NVH. SAE Tech. Pap., 2015, art. 2015-01-1285, doi: https://doi.org/10.4271/2015-01-1285
[6] Plantegenet T., Arghir M., Hassini M. et al. The thermal unbalance effect induced by a journal bearing in rigid and flexible rotors: experimental analysis. Tribol. Trans., 2020, vol. 63, no. 1, pp. 52–67, doi: https://doi.org/10.1080/10402004.2019.1658836
[7] Murphy B.T., Lorenz J.A. Case study of Morton effect shaft differential heating in a variable-speed rotating electric machine. Proc. ASME Turbo Expo, 2011, paper GT2011-45228, pp. 257–269, doi: https://doi.org/10.1115/GT2011-45228
[8] Tong X., Palazzolo A. Measurement and prediction of the journal circumferential temperature distribution for the rotordynamic Morton effect. J. Tribol., 2018, vol. 140, no. 3, art. 031702, doi: https://doi.org/10.1115/1.4038104
[9] Polichronis D., Evaggelos R., Alcibiades G. et al. Turbocharger lubrication — lubricant behavior and factors that cause turbocharger failure. Int. J. Automot. Eng. Technol., 2013, vol. 2, no. 1, pp. 40–54.
[10] Serrano J.R., Tiseira A., Garcia-Cuevas L.M. et al. Adaptation of a 1-D tool to study transient thermal in turbocharger bearing housing. Appl. Therm. Eng., 2018, vol. 134, pp. 564–575, doi: https://doi.org/10.1016/j.applthermaleng.2018.01.085
[11] Plaksin A.M., Gritsenko A.V., Burtsev A.Yu. et al. Extending the life of turbochargers automotive engineering application of the accumulator in the lubrication system. Fundamentalnye issledovaniya [Fundamental Research], 2014, no. 6–4, pp. 728–732. (In Russ.).
[12] Shaaban S. Experimental investigation and extended simulation of turbocharger non-adiabatic performance. Doctoral thesis. Hannover Universität, 2004. 228 p.
[13] Baines N., Wygant K.D., Dris A. The analysis of heat transfer in automotive turbochargers. J. Eng. Gas Turbines Power., 2010, vol. 132, no. 4, art. 042301, doi: https://doi.org/10.1115/1.3204586
[14] Cormerais M., Hetet J.F., Chesse P. et al. Heat transfer analysis in a turbocharger compressor: modeling and experiments. SAE Tech. Pap., 2006, no. 2006-01-0023, doi: https://doi.org/10.4271/2006-01-0023
[15] Burke R.D., Olmeda P., Arnau F. et al. Modelling of Turbocharger heat transfer under stationary and transient conditions. 11th Int. Conf. on Turbochargers and Turbocharging, 2014, pp. 103–112, doi: https://doi.org/10.1533/978081000342.103
[16] Gil A., Omar A.T., Migel L.G. et al. Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. Int. J. Engine Res., 2020, vol. 21, no. 8, doi: https://doi.org/10.1177%2F1468087418804949
[17] Lushcheko V.A., Khasanov R.R., Khayrullin A.Kh. et al. Research into the operation of turbocharger components in an internal combustion engine. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2017, no. 12, pp. 20–29, doi: http://dx.doi.org/10.18698/0536-1044-2017-12-20-29
[18] Суворов И.А., Бердников Л.А. Исследование возможности тепловой оптимизации ротора турбокомпрессора с проведением конечно-элементных анализов. Труды НГТУ им. Р.Е. Алексеева, 2013, № 4, c. 56–65.
[19] Aghaali H., Angstrom H., Serrano J.R. Evaluation of different heat transfer conditions on an automotive turbocharger. Int. J. Engine Res., 2015, vol. 16, no. 2, pp. 137–151, doi: https://doi.org/10.1177%2F1468087414524755
[20] Aghaali H., Angstrom H. Turbocharged SI-engine simulation with cold and hot-measured turbocharger performance maps. Proc. ASME Turbo Expo, 2012, paper GT2012-68758, pp. 671–679, doi: https://doi.org/10.1115/GT2012-68758
[21] San Andres L.A., Barbarie V., Bhattacharya A. et al. On the effect of thermal energy transport to the performance of (semi) floating ring bearing systems for automotive turbochargers. J. Eng. Gas Turbines Power., 2012, vol. 134, no. 10, art. 102507, doi: https://doi.org/10.1115/1.4007059
[22] Romagnoli A., Manivannan A., Rajoo S. et al. A review of heat transfer in turbochargers. Renew. Sust. Energ. Rev., 2017, vol. 79, pp. 1442–1460, doi: https://doi.org/10.1016/j.rser.2017.04.119
[23] Zadorozhnaya E., Sibiryakov S., Hudyakov V. Theoretical and experimental investigations of the rotor vibration amplitude of the turbocharger and bearings temperature. Tribol. Ind., 2017, vol. 39, no. 4, pp. 452–459, doi: https://doi.org/10.24874/ti.2017.39.04.04
[24] Sharoglazov B.A., Shishkov V.V. Porshnevye dvigateli: teoriya, modelirovanie i raschet protsessov [Piston engines: theory, modeling and processes calculation]. Chelyabinsk, ID YuUrGU Publ., 2011. 525 p. (In Russ.).
[25] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Energiya Publ., 1977. 344 p. (In Russ.).
[26] Menter F.R. Influence of freestream values on k-? turbulence model predictions. AIAA J., 1992, vol. 30, no. 6, pp. 1657–1659.
[27] Beletskiy V.M., Krivov G.A. Alyuminievye splavy (sostav, svoystva, tekhnologiya, primenenie) [Aluminum alloys (composition, properties, technology application)]. Kiev, Komintekh Publ., 2005. 365 p. (In Russ.).
[28] Gerasimov V.V., Monakhov A.S. Materialy yadernoy tekhniki [Materials of nuclear technics]. Moscow, Energoizdat Publ., 1982. 288 p. (In Russ.).
[29] Rene 41. rolledalloys.com: website. https://www.rolledalloys.com/alloys/cobalt-alloys/rene-41/en/ (accessed: 15.06.2022).
[30] Chirkin V.S. Teplofizicheskie svoystva materialov yadernoy tekhniki [Thermophysical properties of materials for nuclear technics]. Moscow, Atomizdat Publ., 1968. 484 p. (In Russ.).
[31] Li Y., Liang F., Zhou Y. et al. Numerical and experimental investigation on thermohydrodynamic performance of turbocharger rotor-bearing system. Appl. Therm. Eng., 2017, vol. 121, pp. 27–38, doi: https://doi.org/10.1016/j.applthermaleng.2017.04.041
[32] Khanin N.S., Aboltin E.V., Lyamtsev B.F. et al. Avtomobilnye dvigateli s turbonadduvom [Vehicle turbo engines]. Moscow, Mashinostroenie Publ., 1991. 336 p. (In Russ.).