Determination of the fine-module teeth cutting section in the eccentric free running mechanisms
Authors: Sharkov O.V., Kalinin A.V. | Published: 04.04.2023 |
Published in issue: #4(757)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: free running mechanism, fine-module teeth, normal forces, mathematical model |
Normal forces use to transfer the load makes it possible to increase load capacity and reliability of the free running mechanisms. Normal forces in the eccentric free running mechanisms are realized in engagement of the fine-module teeth that are cut on the outer cage inner surface and the outer surface of the eccentric rings. To ensure correct operation of the mechanism in jamming and wedging, value of the fine-module teeth cutting section angle should be selected from the equality condition of the radial clearance between the outer cage teeth and the eccentric ring in the entire working section. To solve the problem, calculation scheme is proposed and mathematical model is obtained that describes relationship between the fine-module cutting section angle and the mechanism geometric parameters. The nature of the main geometric parameters influence (radius, eccentricity, radial clearance, module, etc.) on the value of the teeth cutting section angle was established. It is shown that eccentricity provides the greatest influence on the working area size, radial clearance and module influences are less pronounced.
References
[1] Kraynev A.F. Ideologiya konstruirovaniya [Design ideology]. Moscow, Mashinostroenie Publ., 2003. 384 p. (In Russ.).
[2] Klebanov B.M., Groper M. Power mechanisms of rotational and cyclic motions. Boca Raton, CRC Press, 2015. 530 p.
[3] Sobolev A.N., Nekrasov A.Ya. The automated design of ratchet mechanisms. Vestnik MGTU Stankin [Vestnik MSUT Stankin], 2016, no. 3, pp. 38–41. (In Russ.).
[4] Ryabov G.K., Medvedev V.I., Petrov A.V. Operation of ratchet free wheel mechanism of modular type in pulse infinitely variable mechanical transmission. Vestnik mashinostroeniya, 2013, no. 10, pp. 27–30. (In Russ.).
[5] Vorkuev D.S. The utmost permissible operation conditions for the ratchet-gear overrunning clutch with the impact shocks considered. Sborka v mashinostroenii, priborostroenii [Assembling in Mechanical Engineering and Instrument-Making], 2008, no. 12, pp. 24–27. (In Russ.).
[6] Sakhaei A.H., Kaijima S., Lee T.L. et al. Design and investigation of a multi-material compliant ratchet-like mechanism. Mech. Mach. Theory, 2018, vol. 121, pp. 184–197, doi: https://doi.org/10.1016/j.mechmachtheory.2017.10.017
[7] Maske Y. Analysis of pawl ratchet mechanism in heavy vehicles. IRJET, 2017, vol. 4, no. 5, pp. 2469–2471.
[8] Jalili N., Wagner J., Dadfarnia M. A piezoelectric driven ratchet actuator mechanism with application to automotive engine valves. Mechatronics, 2003, vol. 13, no. 8-9, pp. 933–956, doi: https://doi.org/10.1016/S0957-4158(03)00009-6
[9] Zhou G-Q., Yuan R-W., Jiang X-M. Study on design of ratchet-pawl clutch in winder. Appl. Mech. Mater., 2012, vol. 215-216, pp. 263–269, doi: https://doi.org/10.4028/www.scientific.net/AMM.215-216.263
[10] Arunkumar A., Muthumani T., Balasubramani V. Design and fabrication of anti roll back system in vehicles using ratchet and pawl mechanism. IJETCSE, 2015, vol. 12, no. 3, pp. 6–9.
[11] Aliukov S., Shefer L., Alyukov A. Overrunning clutches in designs of inertial continuously variable transmissions. Proc. WCE, 2018, vol. II, pp. 684–689.
[12] Leonov A.I. Mikrokhrapovye mekhanizmy svobodnogo khoda [Microratchet clutching devices]. Moscow, Mashinostroenie Publ., 1982. 219 p. (In Russ.).
[13] Bondaletov V.P., Kozlova S.N., Shenkman L.V. Aspects of using microratchet clutching devices of block design. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2006, no. 1, pp. 84–87. (In Russ.).
[14] Leonov S.A. Optimization of parameters of the ratchet free-run mechanism with resilient working bodies. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2011, no. 2, pp. 12–15, doi: http://dx.doi.org/10.18698/0536-1044-2011-2-12-15 (in Russ.).
[15] Denisov D.A. Issledovanie mekhanizmov svobodnogo khoda s yacheistoy oboymoy na razlichnykh rezhimakh raboty [Study on clutching mechanisms with honeycomb cage]. V: Issledovanie dolgovechnosti i nadezhnosti nekotorykh peredach [In: Study on durability and reliability of some gears]. Simferopol, Tavriya Publ., 1971, pp. 11–30. (In Russ.).
[16] Pylaev B.V., Shamin A.A. Bypass gear clutch for nonfrictional high-torque speed regulator. Vestnik mashinostroeniya, 2008, no. 6, pp. 3–6. (In Russ.). (Eng. version: Russ. Engin. Res., 2008, vol. 28, no. 6, pp. 517–522, doi: https://doi.org/10.3103/S1068798X08060014)
[17] Mackin T.J., Anderson N., Aguilar S. et al. Fatigue failure of a star–ratchet gear. Eng. Fail. Anal., 2013, vol. 32, pp. 334–347, doi: https://doi.org/10.1016/j.engfailanal.2013.03.009
[18] Sharkov O.V., Kalinin A.V. Analysis of the conditions for the contactless movement of eccentric freewheel mechanisms. Izvestiya vuzov. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 7, pp. 3–9, doi: http://dx.doi.org/10.18698/0536-1044-2021-7-3-9 (in Russ.).
[19] Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. Courier Corp., 2000. 1130 p. (Russ. ed.: Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Sankt-Petersburg, Lan Publ., 2003. 831 p.)