Evaluation of the force fit conical joint load-bearing capacity for components made of the carbon-carbon composite materials
Authors: Lodyakov A.O., Lyubchenko M.A., Magnitsky I.V. | Published: 22.03.2024 |
Published in issue: #4(769)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: carbon-carbon composite materials, conical joint, force fit, friction coefficient, load-bearing capacity |
The paper considers a possibility to transmit torque in the shaft-bushing components made of the composite materials. Experimental studies were conducted to evaluate the force fit load-bearing capacity of the conical joint made of the spatially reinforced carbon-carbon composite materials (CCCM) with the 4DL reinforcement scheme. The torque experimental dependence on the axial force acting on the joint conical surface was obtained. Based on the experimental data, the friction coefficient dependence on the normal force acting on the joint surface was determined for a force fit conical joint made of the carbon-carbon composite materials. It was established that friction coefficient in the conical joint made of CCCM was less than in a similar conical joint made of metals.
EDN: LEADKZ, https://elibrary/leadkz
References
[1] Stepashkin A.A. Rabotosposobnost uglerod-uglerodnykh kompozitsionnykh materialov friktsionnogo naznacheniya pri tsiklicheskom nagruzhenii. Diss. kand. tekh. nauk [Performance of carbon-carbon composite materials for friction purposes under cyclic loading. Kand. tech. sci. diss.]. Moscow, MISiS Publ., 2013. 201 p. (In Russ.).
[2] Potapov A.M. Prospects in using carbon-carbon composite materials based on viscose carbon fibers for the space technology needs. VANT [Issues of Nuclear Science and Technology], 2015, no. 5, pp. 152–156. (In Russ.).
[3] Lukina N.F., Petrova A.P., Mukhametov R.R. et al. New developments in the field of adhesive aviation materials. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 452–459, doi: https://doi.org/10.18577/2071-9140-2017-0-S-452-459 (in Russ.).
[4] Aristov V.F., Zdvizhkov A.T., Kosheleva O.K. [High-performance heat-resistant adhesives]. Reshetnevskie chteniya. Mat. XXI Mezhd. nauch.-prakt. konf. T. 1 [Reshetnev Readings. Proc. XXI Int. Sci.-Pract. Conf. Vol. 1]. 2017. Krasnoyarsk, SibGU, 2017, pp. 68–69. (In Russ.).
[5] Alyamovskiy A.I., Davydov D.Ya., Zemtsova E.V. et al. Results of experimental studies into high-temperature adhesive compositions on bismaleimide base as applied to rocket and space hardware. Kosmicheskaya tekhnika i tekhnologii [Space Engineering and Technology], 2020, no. 3, pp. 24–34. (In Russ.).
[6] Zakharov M.N., Lyubchenko M.A. Analysis of ultimate loads on the screw joints to be used in articles made of carbon-carbon composites. Konstruktsii iz kompozitsionnykh materialov [Composite Materials Constructions], 2017, no. 4, pp. 82–87. (In Russ.).
[7] Zakharov M.N., Lyubchenko M.A., Magnitskiy I.V. Fracture criterion of threaded joints of parts from composite materials. Vestnik mashinostroeniya, 2018, no. 12, pp. 3–6. (In Russ.).
[8] Lyubchenko M.A., Magnitskiy I.V. Strength evaluation of carbon-carbon composite threaded joint in composite part design. Voprosy oboronnoy tekhniki. Ser. 15, 2018, no. 3, pp. 14–20. (In Russ.).
[9] Guan Z., Mu J., Su F. et al. Pull-through mechanical behavior of composite fastener threads. Appl. Compos. Mater., 2015, vol. 22, no. 3, pp. 251–267, doi: https://doi.org/10.1007/s10443-014-9404-5
[10] Zhang Y., Zhou Z., Tan Z. Compression shear properties of bonded–bolted hybrid single-lap joints of C/C composites at high temperature. Appl. Sci., 2020, vol. 10, no. 3, art. 1054, doi: https://doi.org/10.3390/app10031054
[11] Kushwaha J., Kumar V.P., Sinnur K.H. Development and evaluation of carbon-carbon threaded fasteners for high temperature applications. Def. Sci. J., 2012, vol. 62, no. 5, pp. 348–355, doi: http://dx.doi.org/10.14429/dsj.62.2395
[12] Zhang Y., Zhou Z., Pan S. et al. Comparison on failure behavior of three-dimensional woven carbon/carbon composites joints subjected to out-of-plane loading at room and high temperature. Compos. Commun., 2021, vol. 23, art. 100567, doi: https://doi.org/10.1016/j.coco.2020.100567
[13] Zhang Y., Zhou Z., Pan S. et al. Comparison of failure modes and damage mechanisms of CFRP and C/C composite joints under out-of-plane loading. Mech. Adv. Mater. Struct., 2022, vol. 29, no. 4, pp. 623–632, doi: https://doi.org/10.1080/15376494.2020.1783404
[14] Liu F., Guan Z., Bian T. Damage model for predicting shear strength of carbon/carbon composite fastener based on post-failure behavior. Compos. Struct., 2019, vol. 221, art. 110864, doi: https://doi.org/10.1016/j.compstruct.2019.04.036
[15] Rozhkova E.A., Chetverikov S.V. Technique for conducting experimental studies on stress-strain state of P-3 profile interference fits. Vestnik RUDN. Ser. Inzhenernye issledovaniya [RUDN Journal of Engineering Research], 2018, vol.19, no. 1, pp. 46–58, doi: https://doi.org/10.22363/2312-8143-2018-19-1-46-58 (in Russ.).
[16] Kurnosov N.E., Evtyushkin A.I. Possibilities of using and extending the scope of application of profile keyless couplings. Vestnik Penzenskogo gosudarstvennogo universiteta [Vestnik of Penza State University], 2013, no. 3, pp. 75–78. (In Russ.).
[17] Lineytsev V.Yu., Ilinykh V.A. Simulation of conical parts based on P-3 profile curves. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2015, no. 2, pp. 51–55. (In Russ.).
[18] Yarilov V.E. Experimental research of conical PG-3 profile compounds. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, no. 2, pp. 39–42. (In Russ.).
[19] Lopa I.V., Nguen Ch.Z. Connection with tightness of the conical parts. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2019, no. 10, pp. 452–457. (In Russ.).
[20] Borodin A.V., Ryazantseva I.L. Influence of updating of surfaces of interface on beariing abiliity of connection with the tightness. Izvestiya Transsiba [Journal of Transsib Railway Studies], 2010, no. 1, pp. 15–20. (In Russ.).
[21] Godunov N.B. Obespechenie rabotosposobnosti i resursosberezheniya pri vosstanovlenii i uprochnenii slozhnoprofilnykh shlitsevykh detaley nakatkoy (na primere shlitsevykh detaley avtotraktornykh kardannykh peredach). Avtoref. diss. dok. tekh. nauk [Maintenance of serviceability and resource saving at restoration and hardening of complex profile spline parts by knurling (on the example of spline parts of automobile tractor cardan gears). Abs. doc. tech. sci. diss.]. Saratov, SGAU Publ., 2010. 35 p. (In Russ.).
[22] Leontyev M.K., Nikolaev I.V. Spline joint stiffness impact on the gas turbine engine rotor dynamics. Vestnik MAI [Aerospace MAI Journal], 2023, vol.30, no. 4, pp. 150–158. (In Russ.).
[23] Lelikov O.P. Osnovy rascheta i proektirovaniya detaley i uzlov mashin [Fundamentals of calculation and design of machine parts and assemblies]. Moscow, Innovatsionnoe mashinostroenie Publ., 2021. 464 p. (In Russ.).
[24] Burkovskiy P.O., Morozov A.V., Kulakov V.V. et al. High-temperature tribotechnical properties of carbon–carbon friction composites. Trenie i iznos, 2022, vol.43, no. 5, pp. 491–501, doi: https://doi.org/10.32864/0202-4977-2022-43-5-491-501 (in Russ.). (Eng. version: J. Frict. Wear, 2022, vol. 43, no. 5, pp. 322–329, doi: https://doi.org/10.3103/S1068366622050026)
[25] Bukovskiy P.O., Morozov A.V., Kirichenko A.N. Influence of running-in on the friction coefficient of c/c composite materials for aircraft brakes. Trenie i iznos, 2020, vol.41, no. 4, pp. 448–456. (In Russ.). (Eng. version: J. Frict. Wear, 2020, vol. 41, no. 4, pp. 326–332, doi: https://doi.org/10.3103/S1068366620040030)
[26] Chichinadze A.V., Albagachiev A.Yu., Kozhemyakina V.D. et al. Assessment of friction and wear characteristics of domestic friction composite materials in loaded aircraft brakes. Trenie i iznos, 2009, vol.30, no. 4, pp. 359–371. (In Russ.). (Eng. version: J. Frict. Wear, 2009, vol. 30, no. 4, pp. 261–270, doi: https://doi.org/10.3103/S1068366609040060)