Hermetically sealed capsule strength and integrity under the emergency fall from different heights
Authors: Tulaeva N.N., Lipatnikov M.A., Minaev I.V., Tabatchikov A.A. | Published: 27.04.2024 |
Published in issue: #5(770)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: hermetically sealed capsule strength and integrity, numerical simulation, emergency fall, transport container |
Hermetically sealed capsule is the main sealing circuit in the ecological safety system to conduct experiments studying the material dynamic properties. Numerical calculations were performed using the finite element method to justify safety during transport and technological operations. Stress-strain state of the hermetically sealed capsule elements was analyzed during emergency falls from technological heights onto the absolutely rigid base. The sealing system performance in maintaining the main structural elements strength, including the bolted connections, was assessed. To verify the obtained numerical estimates, full-scale tests were carried out in the most dangerous case of an emergency fall of the hermetically sealed capsule from the two-meter height. The paper shows that the experiment and numerical simulation results are in good agreement. According to numerical calculations using the verified finite element model of the hermetically sealed capsule, strength and tightness preservation is predicted when a hermetically sealed capsule falls autonomously from two meters and from nine meters as part of the transport container.
EDN: TGCMTT, https://elibrary/tgcmtt
References
[1] Gerasimov S.I., Odzerikho I.A., Gerasimova R.V. et al. Safe conditions for conducting tests using ballistic facilities. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2019, no. 9, pp. 105–114, doi: https://doi.org/10.18698/0536-1044-2019-9-105-114 (in Russ.).
[2] Ilkaev R.I., Mikhaylova A.L., Zhernokletov M.V. eds. Eksperimentalnye metody i sredstva v fizike ekstremalnykh sostoyaniy veshchestva [Experimental methods and means in physics of extreme states of matter]. Moscow, RAN Publ., 2021. 484 p. (In Russ.).
[3] Zhernokletov M.V., Glushak B.L. red. et al. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh [Methods of research of properties of materials under intensive dynamic loads]. Sarov, RFYaTs-VNIIEF Publ., 2005. 428 p. (In Russ.).
[4] Stepanov A.S., Muzyrya A.K., Kuzmin V.P. et al. Vzryvozashchitnaya kamera [Explosion-proof chamber]. Patent RU 2450243. Appl. 03.08.2012, publ. 10.05.2012. (In Russ.).
[5] Dolbishchev S.F., Bondarev A.V., Grishin A.V. et al. Vzryvozashchitnaya kamera [Explosion-proof chamber]. Patent RU 2700749. Appl., 31.08.2018, publ. 19.09.2019. (In Russ.).
[6] Stepanov A.S., Maltsev A.P., Belyakov V.I., Gordeev I.N. Soedinenie kryshki s korpusom kamery [Cover connection with camera housing]. Patent RU 181529. Appl. 19.03.2018, publ. 17.07.2018. (In Russ.).
[7] Issledovanie dinamicheskikh svoystv materialov [Study of dynamic properties of materials]. vniitf.ru: website. URL: http://vniitf.ru/article/issledovanie-dinamicheskikh-svoystv-materialov (accessed: 30.08.2023). (In Russ.).
[8] Tulaeva N.N., Lipatnikov M.A., Minaev I.V. et al. [Pressure capsule strength at accidental falling from 9 meters height]. Zababakhinskie nauchnye chteniya. Sb. mat. XV Mezhd. konf. [Zababakhin Scientific Talks. Proc. XV Int. Conf.]. Snezhinsk, RFYaTs-VNIIEF, 2021, p. 212. (In Russ.).
[9] Hutton D.V. Fundamentals of finite element analysis. New York, McGraw Hill, 2004. 494 p.
[10] Norrie D.H., de Vries G. An introduction to finite element analysis. Academic Press, 1978. 301 p. (Russ. ed.: Vvedenie v metod konechnykh elementov. Moscow, Mir Publ., 1981. 304 p.)
[11] Bazhenov V.G. Mathematical modeling and methods of determining strain and strength characteristics of materials. Fizicheskaya mekhanika, 2007, vol. 10, no. 5, pp. 91–105. (In Russ.).
[12] Bazhenov V.G., Nagornykh E.V., Osetrov D.L. et al. Numerical and experimental analysis of tension-torsion processes in cylindrical samples made of 09G2S steel under large deformations before destruction. Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki [Proceedings of Kazan University. Physics and Mathematics Series], 2018, vol. 160, no. 3, pp. 495–507. (In Russ.).
[13] Balandin V.V., Balandin V.V., Bragov A.M. et al. High-rate deformation and fracture of steel 09G2S. Izvestiya RAN. MTT, 2014, no. 6, pp. 78–85. (In Russ.). (Eng. version: Mech. Solids., 2014, vol. 49, no. 6, pp. 666–672, doi: https://doi.org/10.3103/S0025654414060089)
[14] Gokhfeld D.A., Getsov L.B., Kononov K.M. et al. Mekhanicheskie svoystva staley i splavov pri nestatsionarnom nagruzhenii [Mechanical properties of steels and alloys under unsteady loading]. Ekaterinburg, Izd-vo UrO RAN Publ., 1996. 408 p. (In Russ.).
[15] Sorokin V.G., ed. Marochnik staley i splavov [Steel and alloys grade book]. Moscow, Mashinostroenie Publ., 1989. 640 p. (In Russ.).