Plane problem in a vibration isolation system with the active dynamic vibration damper
Authors: Buryan Yu.A., Shalai V.V., Sitnikov D.V., Buryan A.A. | Published: 07.10.2024 |
Published in issue: #10(775)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: active dynamic vibration damper, vibration isolation system, vibration protection, angular vibrations, frequency characteristics |
The paper considers a plane problem in vibration isolation and vibration protection with the active dynamic vibration damper (ADVD) under an assumption that a single ADVD is positioned near the center of mass of a vibroactive unit suspended on two elastic-dissipative supports. It analyzes the influence of the distance between the ADVD center of mass and the vibroactive forces point of application based on the compiled mathematical model. The paper shows that with the supports symmetrical arrangement mutual influence of the elastic fields between the supports is missing, the vibration isolation efficiency remains high, but the vibration protection properties are deteriorating with the ADVD switched due to the angular vibrations. It is established that the vibration isolation efficiency remains consistently high with the supports’ asymmetrical arrangement. Thus, it is required to position the ADVD as close as possible to the vibroactive body center of mass to ensure effective vibration isolation and vibration protection with a plane problem. However, not one, but two ADVDs could be installed under each support, which requires additional research.
EDN: OMSBCL, https://elibrary/omsbcl
References
[1] Butenin N.V., Lunts Ya.L., Merkin D.R. Kurs teoreticheskoy mekhaniki [Course of theoretical mechanics]. Sankt-Petersburg, Lan Publ., 2023. 732 p. (In Russ.).
[2] Chelomey V.N., Frolov K.V., ed. Vibratsii v tekhnike. T. 6. Zashchita ot vibratsii i udarov [Vibrations in engineering. Vol. 6. Vibration and shock protection]. Moscow, Mashinostroenie Publ., 1981. 456 p. (In Russ.).
[3] Petrov A.A. Stability of single-mass active vibration isolation system with force feedback. Doklady XXVII sessii RAO, 2014, pp. 1033–1043. (In Russ.).
[4] Eliseev S.V., Reznik Yu.N., Khomenko A.P. Mekhatronnye podkhody v dinamike mekhanicheskikh kolebatelnykh system [Mechatronical approaches in dynamics of mechanical oscillation systems]. Novosibirsk, Nauka Publ., 2011. 384 p. (In Russ.).
[5] Rybak L.A., Sinev A.V., Pashkov A.I. Sintez aktivnykh sistem vibroizolyatsii na kosmicheskikh obektakh [Synthesis of active vibration isolation systems on space objects]. Moscow, Yanus-K Publ., 1997. 160 p. (In Russ.).
[6] Shelenok E.A. Modeling of combined system of adaptive suppression of forced oscillations. Informatika i sistemy upravleniya [Information Science and Control Systems], 2014, no. 3, pp. 47–55.
[7] Tribelskiy I.A., Shalay V.V., Zubarev A.V. et al. Raschetno-eksperimentalnye metody proektirovaniya slozhnykh rezinokordnykh konstruktsiy [Calculation and experimental methods of designing complex rubber-cord structures]. Omsk, OmGTU Publ., 2011. 238 p. (In Russ.).
[8] Kiryukhin A.V., Tikhonov V.A., Chistyakov A.G. et al. Active vibration protection — purpose, principles, condition. 1. Purpose and design principles. Problemy mashinostroeniya i avtomatizatsii, 2011, no. 2, pp. 108–111. (In Russ.).
[9] Buryan Yu.A., Shalay V.V., Zubarev A.N. et al. Dynamic compensation for the vibro-active forces in the vibrating systems. Mekhanotronika, avtomatizatsiya, upravlenie, 2017, no. 3, pp. 192–195, doi: https://doi.org/10.17587/mau.18.192-195 (in Russ.).
[10] Eliseev S.V., Reznik Yu.N., Khomenko A.P. Mekhatronnye podkhody v dinamike mekhanicheskikh kolebatelnykh system [Mechatronical approaches in dynamics of mechanical oscillation systems]. Novosibirsk, Nauka Publ., 2011. 384 p. (In Russ.).
[11] Zubkov A.I. Approksimatsiya kharakteristiki pnevmaticheskogo uprugogo elementa rezinokordnymi obolochkami [Approximation of the characteristic of pneumatic elastic element by rubber-cord shells]. V: Raschet, konstruirovanie, izgotovlenie i ekspluatatsiya [In: Calculation, design, manufacture and operation]. Moscow, TsNIITEneftekhim Publ., 1977, pp. 47–49. (In Russ.).
[12] Buryan Yu.A., Sitnikov D.V., Buryan A.A. [Vibration isolation system with active dynamic vibration damper for polyharmonic vibration forces]. Zashchita ot povyshennogo shuma i vibratsii. Sb. tr. konf. IX Vseros. nauch.-prakt. konf. [Protection against Excessive Noise and Vibration. Proc. IX Russ. Sci.-Pract. Conf.]. Sankt-Petersburg, Institut akusticheskikh konstruktsiy Publ., 2023, pp. 17–26. (In Russ.).
[13] Buryan Yu.A., Shalay V.V., Sitnikov D.V. et al. Transient processes in an active vibration isolation system with the vibroactive forces inertial compensator. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 8, pp. 23–31, doi: http://dx.doi.org/10.18698/0536-1044-2023-8-23-31 (in Russ.).
[14] Matveenko V.P., ed. Metody prikladnoy vyazkouprugosti [Methods of applied viscoelasticity]. Ekaterinburg, IMSS UrO RAN Publ., 2003. 412 p. (In Russ.).
[15] Abdishukurova G.M., Ablokulov Sh.Z. On vibrations of an elastically supported body when its gravity centre does not coincide with elasticity centre. Molodoy uchenyy [Young Scientist], 2019, no. 36, pp. 5–10. (In Russ.).