Simulation of the non-resonant vibration exciter operation
Authors: Popov Y.G., Furmanov D.V., Malov G.S. | Published: 09.12.2024 |
Published in issue: #12(777)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: debalance vibration exciter, dynamic simulation, resonance phenomena, vibratory roller, vibration |
A significant number of vibration machines are operating in the above-resonance modes. Such machines include vibration tables, screens, conveyors, rollers, loaders, plates, etc. In this case, the simple debalance vibration exciters are used; they are driven by an electric or hydraulic motor. Acceleration and deceleration of such the vibration exciters are leading to the mechanism passing the resonant frequency, which results in the high-amplitude oscillations negatively affecting the structure elements and the material being machined. The paper considers the problem of designing the debalance vibration exciters that ensure absence of a driving force at the moment of passing the resonant frequencies. This allows avoiding negative effects in the unsteady motion. The paper analyzes the patents proposing a solution to this problem. It provides dynamic simulation of a debalance vibration exciter with eccentricity changing under the driving force action to assess the structures’ performance and develop approaches to designing such vibration exciters. Main operation characteristics of the standard and non-resonant vibrators are considered. Feasibility of developing a methodology in designing such vibration exciters is presented.
EDN: JMTLAK, https://elibrary/jmtlak
References
[1] Blekhman L.I., Kremer E.B., Vasilkov V.B. Research on vibration processes and devices: new results and applications. In: Mechanics and control of solids and structures. Springer, 2022, pp. 75–90, doi: https://doi.org/10.1007/978-3-030-93076-9_4
[2] Wen B. Recent development of vibration utilization engineering. Front. Mech. Eng. China, 2008, vol. 3, no. 1, pp. 1–9, doi: https://doi.org/10.1007/s11465-008-0017-2
[3] Blekhman I.I., Semenov Y.A., Yaroshevych M.P. On the possibility of designing adaptive vibration machinery using self-synchronizing exciters. In: Advanced technologies in robotics and intelligent systems. Springer, 2020, pp. 231–236, doi: https://doi.org/10.1007/978-3-030-33491-8_28
[4] Zemskov V.D. Patent SU 107637. Inertsionnyy vibrator [Inertia vibrator]. Appl. 04.04.1955, publ. 30.11.1956. (In Russ.).
[5] Pikulev N.A. Patent SU 131528. Vibrator [Vibrator]. Appl. 12.11.1959, publ. 30.11.1960. (In Russ.).
[6] Tsaplin S.A. Patent SU 112035. Debalans dlya vibratsionykh mashin [Unbalance for vibratory machines]. Appl. 23.05.1957, publ. 30.11.1958. (In Russ.).
[7] Blekhman I.I., Blekhman L.I., Yaroshevich N.P. Upon drive dynamics of vibratory machines with inertia excitation. Obogashchenie rud, 2017, no. 4, pp. 49–53, doi: https://doi.org/10.17580/or.2017.04.09 (in Russ.).
[8] Gursky V., Krot P., Korendiy V. et al. Dynamic analysis of an enhanced multi-frequency inertial exciter for industrial vibrating machines. Machines, 2022, vol 10, no. 2, pp. 130–134, doi: https://doi.org/10.3390/machines10020130
[9] Gurevich L.M. Patent SU 278502. Vibrator s peremennym staticheskim momentom [Vibrator with variable static moment]. Appl. 08.01.1969, publ. 05.08.1970. (In Russ.).
[10] Malakhov A.P., Anosov V.N., Chichinin I.S. et al. Reguliruemyy vibrovozbuditel [Adjustable vibration generator]. Patent RU 2240185. Appl. 11.04.2003, publ. 20.11.2004. (In Russ.).
[11] Cochran T.E. Vibrating apparatus for vibratory compactors. Patent US 4362431. Appl. 14.05.1981, publ. 07.12.1982.
[12] Simonov B.F., Kordubailo A.O., Neyman V.Y. et al. Modelling of electric drive of vibration exciter. J. Phys.: Conf. Ser., 2020, vol. 1661, art. 012083, doi: https://doi.org/10.1088/1742-6596/1661/1/012083
[13] Yaroshevich N., Yaroshevych O., Lyshuk V. Drive dynamics of vibratory machines with inertia excitation. In: Vibration engineering and technology of machinery. Springer, 2021, pp. 37–47, doi: https://doi.org/10.1007/978-3-030-60694-7_2
[14] Tyuremnov I.S., Ignatyev A.A., Filatov I.S. Statistical analysis of technical characteristics for the soil vibrating rollers. Vestnik TOGU [Bulletin of Pacific National University], 2014, no. 3, pp. 81–88. (In Russ.).
[15] Furmanov D.V., Barulev A.V., Tarasova N.E. et al. Dynamic braking of the inertial vibrator of vibratory plates for concrete mixes compacting. Vestnik Sibirskogo gosudarstvennogo avtomobilno-dorozhnogo universiteta [The Russian Automobile and Highway Industry Journal], 2019, vol. 16, no. 2, pp. 134–144. (In Russ.).
[16] Goydo M.E. Proektirovanie obemnykh gidroprivodov [Design of volumetric hydraulic drives]. Moscow, Mashinostroenie Publ., 2009. 304 p. (In Russ.).
[17] Zhu S., Yang J., Yan H. et al. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers. Veh. Syst. Dyn., 2015, vol. 53, no. 9, pp. 1296–1314, doi: https://doi.org/10.1080/00423114.2015.1046460
[18] Li S., Hu C. Study on dynamic model of vibratory roller - soil system. IOP Conf. Ser. Earth Environ. Sci., 2018, vol. 113, art. 012187, doi: https://doi.org/10.1088/1755-1315/113/1/012187
[19] Tyuremnov I.S., Morev A.S., Furmanov D.V. [To the problem of justification of the value of the soil connected mass at rheological modelling of soil compaction process by a vibrating roller]. Problemy mashinovedeniya. Mat. III Mezhd. nauch.-tekh. konf. Ch. 1 [Problems of Mechanical Engineering. Proc. III Int. Sci.-Pract. Conf. P. 1]. Omsk, OmGTU, 2019, pp. 215–223. (In Russ.).
[20] Li J., Lu L., Zhou Z. et al. Dynamic modeling simulation and analysis of amplitude frequency characteristics on Tandem-Heavy oscillating rollers. IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 382, no. 3, art. 032040, doi: https://doi.org/10.1088/1757-899X/382/3/032040
[21] Popov Yu.G., Malov G.S., Krasnikov A.S. Modeling and optimization of two-amplitude eccentric weight with fluent inner mass. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 6, pp. 30–38, doi: https://doi.org/10.18698/0536-1044-2023-6-30-38 (in Russ.).