Influence of the Toroidal Tool Kinematics on Residual Stress-Strain State of the Surface Layer of Machine Parts
Authors: Zaides S.A., Nguyen Huu Hai | Published: 22.06.2022 |
Published in issue: #7(748)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: oscillating rotation, two-radius roller, plastic deformation depth, residual stresses, surface plastic deformation |
The article considers an approach to increasing compressive residual stresses during surface plastic deforming. The technical idea is based on the consideration of the kinematics of the working tool. A new hardening process based on the circular oscillation of the working tool is proposed. Finite element modeling which allows determining the residual stresses arising during hardening of machine parts was used to prove the effectiveness of the new kinematics of the tool. It has been found that in terms of increasing residual stresses, the oscillating movement of the working roller is much more efficient than the static one.
References
[1] Odintsov L.G. Uprochnenie i otdelka detaley poverkhnostnym plasticheskim deformirovaniem [Parts hardening and finishing by surface plastic deformation]. Moscow, Mashinostroenie Publ., 1987. 328 p. (In Russ.).
[2] Alekseev P.G. Raising efficiency of wear-resistant steel parts by surface hardening. Stanki i instrument, 1968, no. 1, pp. 7–9. (In Russ.).
[3] Smelyanskiy V.M. Mekhanika uprochneniya detaley poverkhnostnym plasticheskim deformirovaniem [Mechanics of parts hardening by surface plastic deformation]. Moscow, Mashinostroenie Publ., 2002. 300 p. (In Russ.).
[4] Belov V.A. Surface hardening of plane surfaces improves their wear-resistance. Mashinostroitel’, 1966, no. 9, 19 p. (In Russ.).
[5] Sulima A.M., Shulov V.A., Yagodkin Yu.D. Poverkhnostnyy sloy i ekspluatatsionnye svoystva detaley mashin [Surface layer and exploitation properties of machine parts]. Moscow, Mashinostroenie Publ., 1988. 239 p. (In Russ.).
[6] Zaydes S.A. Ostatochnye napryazheniya i kachestvo kalibrirovannogo metalla [Residual stress and quality of graded metal]. Irkutsk, Izd-vo IrGTU Publ., 1992. 200 p. (In Russ.).
[7] Brown M., Wright D., Saoubi R.M. et al. Destructive and non-destructive testing methods for characterization and detection of machining-induced white layer: a review paper. CIRP J. Manuf. Sci. Technol., 2018, vol. 23, pp. 39–53, doi: https://doi.org/10.1016/j.cirpj.2018.10.001
[8] Blyumenshteyn V.Yu., Makhalov M.S. Impact of cutting regimes on residual stress in a surface layer dimensional at dimensional coincident rolling. Obrabotka metallov [Metal Working and Material Science], 2008, no. 2, pp. 15–22. (In Russ.).
[9] Ostatochnye napryazheniya i metody regulirovaniya [Residual stress and methods for its regulation]. Moscow, Institut problem mekhaniki ANSSSR Publ., 1982. 412 p. (In Russ.).
[10] Polyak M.S. Tekhnologiya uprochneniya. T. 2 [Hardening technology. Vol. 2]. Moscow, Mashinostroenie Publ., 1995. 688 p. (In Russ.).
[11] Zaydes S.A., Nguen Kh.Kh. Sposob poverkhnostnogo plasticheskogo deformirovaniya naruzhnykh poverkhnostey tel vrashcheniya [Method for surface plastic deformation of the outer surfaces of bodies of rotation]. Patent RU 2758713. Appl., 14.01.2021, publ. 01.11.2021. (In Russ.).
[12] Chen X., Liu Y. Finite element modeling and simulation with ANSYS workbench. CRC Press, 2014. 411 p.
[13] Bruyaka V.A., Fokin V.G., Kuraeva Ya.V. Inzhenernyy analiz v ANSYS Workbench. Ch. 2 [Engineering analysis in ANSYS WorkBench. P. 2]. Samara, SamGTU Publ., 2013. 75 p. (In Russ.).
[14] Bakov K.A. ANSYS. Spravochnik pol’zovatelya [ANSYS. user guide]. Moscow, DMK Press, 2005. 650 p. (In Russ.).
[15] Zaydes S.A., Isaev A.N. Tekhnologicheskaya mekhanika osesimmetrichnogo deformirovaniya [Technological mechanics of axial-symmetric deformation]. Irkutsk, Izd-vo IrGTU Publ., 2007. 432 p. (In Russ.).
[16] Vishnyakov Ya.D., Piskarev V.D. Upravlenie ostatochnymi napryazheniyami v metallakh i splavakh [Control on residual stress in metals and alloys]. Moscow, Metallurgiya Publ., 1989. 253 p. (In Russ.).
[17] Bi Y., Yuan X., Lv J. et al. Effect of yield strength distribution welded joint on crack propagation path and crack mechanical tip field. Materials, 2021, vol. 14, no. 17, art. 4947, doi: https://doi.org/10.3390/ma14174947
[18] Krechetov A.A., Blyumenshteyn V.Yu. Model of strain accumulation process at the stage of cycle life. Uprochnyayushchie tekhnologii i pokrytiya [Strengthening Technologies and Coatings], 2005, no. 4, pp. 11–13. (In Russ.).
[19] Drozd M.S., Matlin M.M., Sidyakin Yu.I. Inzhenernye raschety uprugoplasticheskoy kontaktnoy deformatsii [Engineering calculation of elastic-plastic contact deformation]. Moscow, Mashinostroenie Publ., 1986. 224 p. (In Russ.).
[20] Bukatyy S.A. Deformatsii lopatok turbomashin posle obrabotki poverkhnosti [Turbomachine blade deformation after surface processing]. V: Voprosy prochnosti elementov aviatsionnykh konstruktsiy [In: Strength problem of aviation construction parts]. Kuybyshev, KuAI Publ., 1986, pp. 72–79. (In Russ.).