A new approach to the manufacturing technology of long hollow products made of fibrous polymer composite materials
Authors: Sayapin S.N. | Published: 21.10.2022 |
Published in issue: #11(752)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: fibrous polymer composite materials, winding method, non-separable mandrel, long hollow products |
The analysis of the main types of mandrels, which are used for the manufacturing the hollow products from fibrous polymer composite materials (FPCM) by winding on a mandrel, has been carried out. The problem of the technology of manufacturing the long-length hollow products from FPCM by winding on a non-separable mandrel is considered. A new approach to the technology of manufacturing long-length products from FPCM on a non-separable reusable mandrel. The mandrel is made in the form of a steel seamless cold-formed pipe of ordinary accuracy and without special treatment of the contact surface is proposed and tested. It is shown, that the application of the developed technology gives the possibility to improve the quality and economic efficiency of products of this type. On the basis of the proposed technology, an experimental batch of long pipes made of CMU-4L carbon fiber plastic with a length of 3200 mm and an outer and inner diameter of 42 and 32 mm, respectively, was manufactured and tested. The proposed approach could be used for the manufacturing both the hollow long-length rods from FPCM and the hollow semi-circular elements, that are molded also on a non-separable mandrel of ordinary accuracy.
References
[1] Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Polymer fiber composites in technics]. Sankt-Petersburg, Nauchnye osnovy i tekhnologii Publ., 2013. 720 p. (In Russ.).
[2] Akkuratov I.L., Alyamovskiy A.I., Davydov D.A. et al. An attempt to develop and build composite structural elements for an electro-optical module of a spacecraft. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2014, no. 1, pp. 92–100. (In Russ.).
[3] Bitkin V.E., Zhidkova O.G., Komarov V.A. Choice of materials for producing dimensionally stable load-carrying structures. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2018, vol. 17, no. 1, pp. 100–117, doi: https://doi.org/10.18287/2541-7533-2018-17-1-100-117 (in Russ.).
[4] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Technology for spinning of composite constructions of rockets and weapons]. Moscow, Bauman MSTU Publ., 2011. 431 p. (In Russ.).
[5] Popov N.N., Filonov A.S., Dontsov G.A. et al. Construction materials for optical modules of remote Earth sensing apparatus. Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotos’’emka, 2012, no. 5, pp. 101–105. (In Russ.).
[6] Gunyaev G.M., Sorina T.G., Khoroshilova I.P. et al. Epoxide construction carbon composites. Aviatsionnaya promyshlennost’, 1984, no. 12, pp. 41–45. (In Russ.).
[7] Kazakov I.A. Razrabotka tekhnologii nepreryvnogo formovaniya osesimmetrichnykh kompozitnykh izdeliy metodom pultruzii. Diss. kand. tekh. nauk [Development of technology for continuous spinning of composite parts with axial symmetry by pultrusion method. Kand. tech. sci. diss.]. Moscow, MGTU STANKIN Publ., 2016. 186 p. (In Russ.).
[8] Tsyplakov O.G. Nauchnye osnovy tekhnologii kompozitsionno-voloknistykh materialov. Ch. 1 [Scientific foundations of fibered composites technology. P. 1]. Permskoe kn. izd-vo Publ., 1974. 317 p. (In Russ.).
[9] Surkov A.A., Konoplin A.Yu. Analysis of the types of tooling used in the manufacture of hollow machine parts from polymeric composite materials. Novye materialy i tekhnologii v mashinostroenii, 2019, no. 29, pp. 100–103. (In Russ.).
[10] Sayapin S.N., Evtov V.D., Bitushan E.I. et al. Sposob izgotovleniya polykh izdeliy iz kompozitsionnykh materialov [Method for manufacture of hollow composite products]. Patent SU 1666336. Appl. 27.07.1988, publ. 30.07.1991. (In Russ.).
[11] Sayapin S.N. Analiz i sintez raskryvaemykh na orbite pretsizionnykh krupnogabaritnykh mekhanizmov i konstruktsiy kosmicheskikh radioteleskopov lepestkovogo tipa. Diss. dok. tekh. nauk [Analysis and synthesis on the orbit of large precision mechanisms and space radio telescope of leaf-type. Kand. tech. sci. diss.]. Moscow, IMASh RAN Publ., 2003. 446 p. (In Russ.).
[12] GOST 19907–2015. Tkani elektroizolyatsionnye iz steklyannykh kruchenykh kompleksnykh nitey [State standard GOST 19907-2015. Dielectric fabrics made of glass twisted complex threads. Specifications]. Moscow, Standartinform Publ., 2015. 9 p. (In Russ.).
[13] GOST 5937–81. Lenty elektroizolyatsionnye iz steklyannykh kruchenykh kompleksnykh nitey. Tekhnicheskie usloviya [State standard GOST 5937-81. Insulating tapes of glass twisted complex threads. Specification]. Moscow, Izdatel’stvo standartov Publ., 2002. 7 p. (In Russ.).
[14] GOST 28006–88. Lenta uglerodnaya konstruktsionnaya. Tekhnicheskie usloviya [State standard GOST 28006–88. Structural carbonic strip. Specifications]. Moscow, Izdatel’stvo standartov Publ., 1989. 14 p. (In Russ.).
[15] Khitrov V.V., Katarzhnov O.I. Technological methods for raising bearing capacity of a compressional composite rod. Mekhanika kompozitnykh materialov, 1985, no. 2, pp. 316–322. (In Russ.).