Stress state simulation of the radial end milling cutter at shaping the complex surfaces
Authors: Ponomarev B.B., Van Duc Nguyen | Published: 09.07.2023 |
Published in issue: #7(760)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: tool stress state, engineering analysis, finite element method, radial end milling cutter, complex surface shaping |
The paper presents results of simulating stress state in the cutting edge zone of the radial end milling cutter with the given tool orientation along the transverse angle. Simulation involved calculating the cutting forces in the ABAQUS program, converting them into loads acting on the tool surface, determining the contact zone of the tool front surface with chips based on the cutting theory and calculating stresses with the uniform load distribution in the considered tool section. Results of the preliminary calculations are provided. Distribution curves of the equivalent, normal and shear stresses in the cutting edge zone of the radial end milling cutter obtained using hardware of the ANSYS finite element analysis system were constructed. Simulation results allow further research to study the tool orientation and the cutting conditions influence on the tool stress state in shaping the complex surfaces. Determination of the machined surface zones, where the calculated stress values exceed the critical values, using the model makes it possible already at the initial stage of the technological process development to exclude destruction of the tool cutting edges and to achieve maximum productivity in shaping the complex surfaces.
References
[1] Nguen Sh.Kh. Sovershenstvovanie protsessa obrabotki poverkhnostey slozhnoy formy sferotsilindricheskimi frezami. Diss. kand. tekh. nauk [Improving the machining process of complex shape surfaces with spherical cylindrical cutters. Kand. tech. sci. diss.]. Irkutsk, IRNITU Publ., 2019. 165 p. (In Russ.).
[2] Mitsubishi. Catalog C009A: cutting tools 2020-2021. URL http://www.mitsubishicarbide.com/application/files/8316/2089/0936/catalog_c009a_full.pdf
[3] Sai L., Belguith R., Maher B. et al. An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis end mill. J. Manuf. Process., 2018, vol. 34-A, pp. 7–17, doi: https://doi.org/10.1016/j.jmapro.2018.05.018
[4] Bouzakis K.D., Aichouh P., Efstathiou K. Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling with ball end tools. Int. J. Mach. Tools Manuf., 2003, vol. 43, no. 5, pp. 499–514, doi: https://doi.org/10.1016/S0890-6955(02)00265-1
[5] Zorev N.N., ed. Razvitie nauki o rezanii metallov [Development of the metal cutting science]. Moscow, Mashinostroenie Publ., 1967. 416 p. (In Russ.).
[6] Zorev N.N. Voprosy mekhaniki protsessa rezaniya metallov [Problems of mechanics of metal cutting process]. Moscow, Mashgiz Publ., 1956. 367 p. (In Russ.).
[7] Zorev N.N. Issledovanie elementov mekhaniki protsessa rezaniya metallov [Research of elements of mechanics of metal cutting process]. Moscow, Mashgiz Publ., 1952. 364 p. (In Russ.).
[8] Poletika F.M. Kontaktnye nagruzki na rezhushchikh poverkhnostyakh instrumenta [Contact loads on cutting tool surfaces]. Moscow, Mashnostroenie Publ., 1969. 148 p. (In Russ.).
[9] Storchak M., Drewle K., Menze C. et al. Determination of the tool-chip contact length for the cutting processes. Materials, 2022, vol. 15, no. 9, art. 3264, doi: https://doi.org/10.3390/ma15093264
[10] Ponomarev B.B., Nguen Sh.Kh. The influence of tool orientation on cutting forces during end milling. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2019, no. 3, pp. 11–20, doi: http://dx.doi.org/10.18698/0536-1044-2019-3-11-20 (in Russ.).
[11] Budak E., Ozturk E., Ozlu.E. Modeling and simulation of 5-axis milling processes. CIRP Annals, 2015, vol. 58, no. 1, pp. 347–350, doi: https://doi.org/10.1016/j.cirp.2009.03.044
[12] Rozenberg A.M., Eremin A.N. Elementy teorii protsessa rezaniya metallov [Elements of theory of metal cutting process]. Moscow, Mashgiz Publ., 1956. 320 p. (In Russ.).
[13] Chzhan Ts., Chen Yu., Kozlov V.N. [Influence of the type of loading on the stress-strain state of the cutting tool]. Nauchnaya initsiativa inostrannykh studentov i aspirantov rossiyskikh vuzov. Sb. dok. X Vseros. nauch.-prakt. konf. [Scientific Initiative of Foreign Students and Graduate Students of Russian Universities. Proc. X Russ. Sci.-Pract. Conf.]. Tomsk, TPU, 2020, pp. 227–232. (In Russ.).
[14] Molnár T.G., Insperger T., Stépán G. State-dependent distributed-delay model of orthogonal cutting. Nonlinear Dyn., 2016, vol. 84, no. 3, pp. 1147–1156, doi: https://doi.org/10.1007/s11071-015-2559-2
[15] Ostafyev V.A. Raschet dinamicheskoy prochnosti rezhushchego instrumenta [Calculation of the dynamic strength of a cutting tool]. Moscow, Mashinostroenie Publ., 1979. 168 p. (In Russ.).
[16] Belov A.V., Neumoina N.G. About use of the generalized criterion of strenth pisarenko-lebedeva in calculations on the strength at nonisotermal processes of ladening. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2014, no. 9–2, pp. 8–10. (In Russ.).
[17] Stal marki R18 [R18 steel grade]. metallicheckiy-portal.ru: website. URL https://metallicheckiy-portal.ru/marki_metallov/sti/R18 (accessed: 15.12.2022). (In Russ.).
[18] Stal 18 instrumentalnaya bystrorezhushchaya [18 fast-cutting tool steel]. enginiger.ru: website. URL https://enginiger.ru/materials/instrumentalnaya-bystrorezhushhaya/stal-r18-instrumentalnaya-bystrorezhushhaya (accessed: 15.12.2022). (In Russ.).
[19] Loladze T.N. Prochnost i iznostoykost rezhushchego instrumenta [Strength and wear resistance of the cutting tools]. Moscow, Mashinostroenie Publ., 1982. 320 p. (In Russ.).