Analysis of the abrasive material dynamic action on a workpiece in machining the complex-profile surfaces with the flow tumbling
Authors: Akulinichev P.D., Albov M.A., Goncharov A.A. | Published: 27.01.2024 |
Published in issue: #2(767)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: final machining, surface quality, free abrasive machining, flow tumbling, non-uniform material removal |
Miniature complex-profile surfaces final machining makes it possible to level out the shape errors and appears to be an urgent technological problem. Miniature complex-profile surfaces are usually machined with a free abrasive, in particular with the flow tumbling. However, scientific literature is missing any information on substantiated methodology in selecting the machining modes that would allow achieving the specified requirements to surface quality and its geometric shape. In this regard, there appears a need to develop a mathematical model of the free abrasive machining with the flow tumbling method, which would make it possible to control the material removal depending on the workpiece immersion depth in the abrasive material and on the flow rate. Theoretical research resulted in developing a mathematical model of the abrasive material dynamic action on the workpiece. Dependence of the workpiece static pressure on its immersion depth was revealed, as well as dependence of the workpiece dynamic pressure on the abrasive material flow rate. Possibility of the uniform and non-uniform material removal from the workpiece was determined.
EDN: BXXBQU
References
[1] Chikhacheva N.Y., Shchedrin A.V., Bekaev A.A. et al. Influence of the tool’s surface microgeometry and the lubricant composition on hole precision in hybrid burnishing. Russ. Engin. Res., 2022, vol. 42, no. 8, pp. 781–786, doi: https://doi.org/10.3103/S1068798X2208010X
[2] Fanidi O., Kostryukov A., Shchedrin A. Predicting the burnishing force for cylindrical workpieces with amodified surface layer. Strojnicky Casopis, 2022, vol. 72, no. 1, pp. 35–48, doi: https://doi.org/10.2478/scjme-2022-0004
[3] Kovalev A.A., Krasko A.S., Rogov N.V. Evaluation of the surface roughness of machine parts with wear-resistant gas thermal coatings during turning. J. Mach. Manuf. Reliab., 2022, vol. 51, no. 6, pp. 540–547, doi: https://doi.org/10.3103/S1052618822050089
[4] Magomedov M.K., Gromov A.E., Yakovlev A.V. Adjustment of impact and laser systems when engraving materials with indeterminate characteristics. Russ. Engin. Res., 2022, vol. 42, no. 1, pp. 1–5, doi: https://doi.org/10.3103/S1068798X22010130
[5] Yakovleva A., Isaenkova M., Minushkin R. The effect of combined processing on residual stresses in the surface layer of power plant parts. Materials, 2022, vol. 15, no. 2, art. 420, doi: https://doi.org/10.3390/ma15020420
[6] Akulinichev P., Zenin I., Goncharov A. Choice of finishing and strengthening treatment method for cycloidal screw surfaces for multi-product production conditions. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 963, art. 012013, doi: https://doi.org/10.1088/1757-899X/963/1/012013
[7] Vasilyev A.S., Goncharov A.A. Special strategy of treatment of difficulty-profile conical screw surfaces of single-screw compressors working bodies. Zapiski Gornogo instituta [Journal of Mining Institute], 2019, vol. 235, pp. 60–64, doi: https://doi.org/10.31897/pmi.2019.1.60 (in Russ.).
[8] Vasiliev A.S., Goncharov A.A. Some aspects of problematics in designing technological complexes. IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 184, art. 062033, doi: https://doi.org/10.1088/1755-1315/194/6/062033
[9] Goncharov A.A. Tekhnologicheskoe obespechenie kachestva formoobrazovaniya tsikloidalnykh vintovykh poverkhnostey pri obrabotke neprofilirovannym instrumentom na mnogotselevykh stankakh. Diss. kand. tekh. nauk [Technological quality assurance of cycloidal helical surfaces shaping during machining with non-profile tools on multipurpose machine tools. Kand. tech. sci. diss.]. Moskva, Bauman MSTU Publ., 2020. 107 p. (In Russ.).
[10] Goncharov A.A., Vasilyev A.S., Gemba I.N. Modern methods of screw-type pumps rotors helical surfaces processing. Vestnik RGATA im. P.A. Solovyeva [Vestnik of P.A. Solovyov Rybinsk State Aviation Technical University], 2017, no. 1, pp. 202–208. (In Russ.).
[11] Gao Y., Zhao Y., Zhang G. et al. Modeling of material removal in magnetic abrasive finishing process with spherical magnetic abrasive powder. Int. J. Mech. Sci., 2020, vol. 177, art. 105601, doi: https://doi.org/10.1016/j.ijmecsci.2020.105601
[12] Kacaras A., Gibmeier J., Zanger F. et al. Influence of rotational speed on surface states after stream finishing. Procedia CIRP, 2018, vol. 71, pp. 221–226, doi: https://doi.org/10.1016/j.procir.2018.05.067
[13] Mirsa A., Pandey P., Dixit U.S. Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. Int. J. Mech. Sci., 2017, vol. 131–132, pp. 853–867, doi: https://doi.org/10.1016/j.ijmecsci.2017.07.023
[14] Akulinichev P.D., Albov M.A., Zenin I.O. et al. Modern methods for finishing cycloidal screw surfaces. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal with Appendix], 2021, no. 9, pp. 3–11, doi: https://doi.org/10.14489/hb.2021.09.pp.003-011 (in Russ.).
[15] Semenov A. Issledovanie primeneniya promyshlennykh robotov dlya tsentrobezhno-rotatsionnoy obrabotki v svobodnom abrazive. Diss. magistra [Investigation of industrial robots application for centrifugal-rotary machining in free abrasive. Master’s thesis.]. Tomsk, TPU Publ., 2019. 135 p. (In Russ.).
[16] Tamarkin M.A., Kolganova E.N., Yagmurov M.A. et al. [Finishing machining of parts in the environment of free abrasives]. Analiz sovremennogo sostoyaniya. Perspektivnye napravleniya razvitiya otdelochno-uprochnyayushchey obrabotki i vibrovolnovykh tekhnologiy [Analysis of a Modern State. Perspective Directions of Development of Finishing and Strengthening Machining and Vibro-Wave Technologies], 2019, pp. 154–157. (In Russ.).
[17] Trifanov V.I., Sukhanova O.A., Shcherbakova A.V. et al. Anodic process in magnetic–abrasion vibrational polishing of nonmagnetic materials. Russ. Engin. Res., 2022, vol. 42, no. S1, pp. S96–S98, doi: https://doi.org/10.3103/S1068798X23010306
[18] Yamaguchi H., Srivastava A.K., Tan M. Magnetic Abrasive Finishing of cutting tools for high-speed machining of titanium alloys. CIRP J. Manuf. Sci. Technol., 2014, vol. 7, no. 4, pp. 299–304, doi: https://doi.org/10.1016/j.cirpj.2014.08.002
[19] Sacher S., Pössnicker D. Low-shear dosing of micro-encapsulated adhesives. Adhes. Adhes. Sealants, 2013, vol. 10, no. 2, pp. 21–23, doi: https://doi.org/10.1365/s35784-013-0158-5
[20] Caitano T.L., Silva L.R., Machado A.R. et al. Influence of finishing post-treatment on drill rake and margin surfaces in the drilling of SAE 4144M steel. CIRP J. Manuf. Sci. Technol., 2022, vol. 37, pp. 81–91, doi: https://doi.org/10.1016/j.cirpj.2022.01.009
[21] Sakar M., Jain V.K., Sidpara A. On the flexible abrasive tool for nanofinishing of complex surfaces. J. Adv. Manuf. Syst., 2019, vol. 18, no. 1, pp. 157–166, doi: https://doi.org/10.1142/S0219686719500082
[22] Babaev A.S., Chartoriyskiy V.P. [Innovative technologies of tow and streaming finish abrasive processing of mechanical engineering, medicine and cutting tools products]. Sovremennyy tendentsii v tekhnologiyakh metalloobrabotki i konstruktsiyakh metalloobrabatyvayushchikh mashin i komplektuyushchikh izdeliy [Modern Trends in Metalworking Technologies and Designs of Metalworking Machines and Components], 2017, pp. 96–102. (In Russ.).
[23] Laptev N.V. Issledovanie tekhnologicheskikh vozmozhnostey buksirnogo polirovaniya pri obrabotke rezhushchikh instrumentov. Diss. magistra [Research of technological possibilities of tow polishing at machining of cutting tools. Master’s thesis]. Tomsk, TPU Publ., 2018. 133 p. (In Russ.).
[24] Akulinichev P.D., Albov M.A., Goncharov A.A. Modern mathematical models of processing with a free abrasive. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal with Appendix], 2023, no. 8, pp. 11–16. (In Russ.).
[25] Fedoseev V.B., Gordeeva A.B., Zatsarinnaya I.A. Impact of defects on multilayer artificial feedforward neural network operability. Vestnik DGTU [Vestnik of Don State Technical University], 2011, vol. 11, no. 2, pp. 163–168. (In Russ.).
[26] Golynskiy M.Yu., Sivakov V.P. Determination of process chips impressure on the hopper bottom and walls. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 15, pp. 42–43. (In Russ.).