Methodology for assessing tightness of the pipeline fitting valves based on results of the rough surfaces simulation
Authors: Buchnev O.S., Gaisin S.N., Zaides S.A. | Published: 16.04.2024 |
Published in issue: #5(770)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: pipeline fittings, sealing surface, surface model, valve tightness, tightness assessment |
The paper considers an approach to assessing tightness of the rough metal surfaces of the pipeline fitting valves. The technical idea is based on using a profilogram of the sealing surface and the experimentally obtained roughness and waviness parameters to create a roughness model reflecting statistical properties of the machined surfaces. An original approach is proposed to simulate the rough surfaces based on generation of the high-frequency oscillations, and to simulate waviness – the low-frequency oscillations with an amplitude higher than the roughness amplitude. The law of probability distribution, autocorrelation functions and spectral densities are used to prove statistical similarity in the resulting random field and the microgeometric parameters. The paper shows that it becomes possible having the sealing surfaces profilograms and without using a full-scale experiment to assess tightness of the pipeline fitting valve assemblies.
EDN: SFBMMJ, https://elibrary/sfbmmj
References
[1] Pogodin V.K. The concept of ensuring safe operation of pipeline valves at industrial enterprises. Armaturostroenie, 2006, no. 1, pp. 34–36. (In Russ.).
[2] Gaysin S.N., Tsvik L.B., Balakirev V.A. Forming sealing areas of pipeline valves by single and multiple disk grinding heads. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2012, no. 5, pp. 44–50. (In Russ.).
[3] Madzhumdar A., Bkhushan B. Fractal model of elastic-plastic contact of rough surfaces. Sovremennoe mashinostroenie. Ser. B, 1991, no. 6, pp. 11–23. (In Russ.).
[4] Kalashnikov V.A. Oborudovanie i tekhnologii remonta truboprovodnoy armatury [Equipment and technologies of repair of pipeline armature]. Moscow, Mashinostroenie Publ., 2001. 230 p. (In Russ.).
[5] Seynov S.V. Truboprovodnaya armatura. Issledovaniya. Proizvodstvo. Remont [Truboprovodnaya armature. Study. Production. Repair]. Moscow, Mashinostroenie Publ., 2002. 390 p. (In Russ.).
[6] Seynov S.V., Seynov Yu.S., Martynov A.N. Tekhnologii i oborudovanie dlya pritirki uplotneniy armatury [Technologies and equipment for lapping of valve seals]. Moscow, Prondo Publ., 2013. 209 p. (In Russ.).
[7] Zaides S.A., Gaisin S.N. Mobile system for restoring the sealing surfaces of pipeline valves. Russ. Engin. Res., 2018, vol. 38, no. 6, pp. 442–445, doi: https://doi.org/10.3103/S1068798X18060205
[8] Gaysin S.N., Zaydes S.A., Tsvik L.B. Ustroystvo dlya shlifovaniya i pritirki uplotnitelnykh poverkhnostey zapornoy truboprovodnoy armatury [Device for grinding and grinding of sealing surfaces of blocking pipeline fittings]. Patent RU 159212. Appl. 17.06. 2015, publ. 10.02.2016. (In Russ.).
[9] Tikhomirov V.P., Izmerov M.A., Tikhomirov P.V. Fractal model of engineering surfaces. Vestnik BGTU [Bulletin of Bryansk State Technical University], 2014, no. 3, pp. 72–80. (In Russ.).
[10] Lanaro F. A random field model for surface roughness and aperture of rock fractures. Int. J. Rock Mech. Min. Sci., 2000, vol. 37, no. 8, pp. 1195–1210, doi: https://doi.org/10.1016/S1365-1609(00)00052-6
[11] Yu Y., Cui Y., Zhang H. et al. Evaluation analysis on leakage performance for beam seal with two sealing areas. IEEE Access, 2022, vol. 10, pp. 29916–29924, doi: https://doi.org/10.1109/ACCESS.2022.3158485
[12] Murtagian G.R., Fanelli V., Villasante J.A. et al. Sealability of stationary metal-to-metal seals. J. Tribol., 2004, vol. 126, no. 3, pp. 591–596, doi: https://doi.org/10.1115/1.1715103
[13] Marie C., Lasseux D. Experimental leak-rate measurement through a static metal seal. J. Fluids Eng., 2007, vol. 129, no. 6, pp. 799–805, doi: https://doi.org/10.1115/1.2734250
[14] Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces. Proc. Royal Soc. London. Ser. A., 1966, vol. 295, no. 1442, pp. 300–319, doi: https://doi.org/10.1098/rspa.1966.0242
[15] Bogomolov D.Yu., Poroshin V.V., Radygin V.Yu. et al. Matematicheskoe modelirovanie techeniya zhidkosti v shchelevykh kanalakh s uchetom realnoy mikrotopografii poverkhnosti ikh stenok [Mathematical modelling of fluid flow in slotted channels taking into account real microtopography of their wall surface]. Moscow, MGIU Publ., 2010. 159 p. (In Russ.).
[16] Gaysin S.N., Zaydes S.A. Inner pressure-tight condition of pipeline valves. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2014, no. 6, pp. 45–49. (In Russ.).
[17] Zaides S.A., Gaisin S.N. Creating sealing surface of shutoff assembly of pipeline fittings. Chem. Petrol. Eng., 2017, vol. 53, no. 1–2, pp. 24–27, doi: https://doi.org/10.1007/s10556-017-0303-0