Certain features of chip formation in the waterjet machining
Authors: Sylvio Simon, Yusubov N.D., Amirli S.F., Amirov F.G. | Published: 13.11.2024 |
Published in issue: #11(776)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: waterjet cutting, chip geometric shape, abrasive particles, material machining, shape of abrasive grain |
According to the DIN8580-1974 standard, waterjet cutting belongs to the group of cutting processes with the geometrically indefinite cutting edge. Such mechanical machining is based on using a high-pressure water jet with or without abrasive additives. The paper theoretically studies dynamic indices of the materials’ waterjet cutting. Equations are derived for the pressure force when feeding a water jet with abrasives to the contact zone, feeding a water jet perpendicularly and at an angle to the cutting surface. Various methods of feeding water jet with abrasive particles to the machined surface are used. Dynamic parameters of chip formation in cutting the HARDOX 500 material are analyzed. Separate abrasive particles geometric shape and perimeter dimensions are studied using the reflected light microscope with subsequent image processing in the computer software environment. Length and width, circumference and angles of separate grains are determined for each particle at maximum magnification by 49 times. Pressure force equations are derived for waterjet machining and when introducing an abrasive grain into the machined surface. Separate chip length, width, circumference and angles are identified after waterjet cutting.
EDN: KMPJYM, https://elibrary/kmpjym
References
[1] Amirov F.G., Simon S., Steffen U. et al. Determınıng the accuracy of water pressure processıng usıng 3D scannıng. Vestnik Azerbaydzhanskoy Inzhenernoy akademii [Herald of the Azerbaijan Engineering Academy], 2021, vol. 13, no. 3, pp. 38–44, doi: https://doi.org/10.52171/2076-0515202113033844
[2] Steffen W. Schneiden mit dem Wasserstrah. Masterthesis. BTU Cottbus–Senftenberg, 2014. 38 p.
[3] Yaglitskiy Yu.K. Modeling of the technological process of water-jet cutting in shipbuilding. Vіsnik NTU «KhPІ». Ser. Novі rіshennya v suchasnikh tekhnologіyakh [Bulletin of NTU "KhPI". Ser. New Solutions in Modern Technologies], 2018, no. 45, pp. 78–86, doi: https://doi.org/10.20998/2413-4295.2018.45.10
[4] Barsukov G.V. [Investigation of shape error at cutting of sheet materials by water-jet]. Sb. tr. mezhd. nauch.- tekh. konf. Fundamentalnye i prikladnye problemy tekhnologii mashinostroeniya. Tekhnologiya-2003 [Proc. Int. Sci.-Tech. Conf. Fundamental and Applied Problems of Machine Building Technology. Technology-2003], 2003, pp. 449–455. (In Russ.).
[5] Barsukov G.V. Povyshenie effektivnosti gidroabrazivnogo rezaniya na osnove diskretnogo regulirovaniya sostoyaniy tekhnologicheskoy sistemy. Diss. dok. tekh. nauk [Increasing the efficiency of waterjet cutting on the basis of discrete regulation of technological system states. Doc. Tech. Sci. Diss.]. Orel, OrelGTU Publ., 2006. 411 p. (In Russ.).
[6] Schulz F. Fertigungstechnik. Springer, 2015. 527 p.
[7] Ignatova A.M., Balabanov S.K., Ignatov M.N. Investigation of the zoning of a waterjet cut’s surface on structural steel of ordinary quality by the method of image analysis. Vestnik PNIPU. Mashinostroenie, materialovedenie [Bulletin PNRPU. Mechanical Engineering, Materials Science], 2019, vol. 21, no. 1, pp. 83–90, doi: https://doi.org/10.15593/2224-9877/2019.1.12 (in Russ.).
[8] Will D., Gebhardt N., Ströhl H. Hydraulik. Grundlagen, Komponenten, Schaltungen. Springer, 2007. 442 p.
[9] Zeng J., Munoz J.P. Intelligent automation of AWJ cutting for efficient production. Proc. 12th Int. Symp on Jet Cutting Technology, BHRA. Rouen, France, 1994, pp. 401–408.
[10] Aurich J., Dornfeld D., Arrazola P. et al. Burrs — analysis, control and removal. Springer, 2009. 254 p.
[11] Wälder K., Wälder O. Statistische Methoden der Qualitätssicherung, München, Wien, Carl Hanser, 2013. 200 p.
[12] Kolb M. Wasserstrahlschneiden. Materialbearbeitung mit einem Hochdruckwasserstrahl. München, Moderne Industrie, 2006. 8 p.
[13] Hörbinger M. Wasserstrahlschneiden: Verfahrensmöglichkeiten und Vergleich mit alternativen industriellen. Technik – Bachelorarbeit, 2011. 43 p.
[14] Risse A. Fertigungsverfahren der Mechantronik, Feinwerk- und Präzisionsgerätetechnik. Springer, 2012. 547 p.
[15] Tamarkin M.A., Tikhonov A.A., Tishchenko E.E. Metal removal in hydroabrasive machining. Russ. Engin. Res., 2014, vol. 34, no. 3, pp. 175–177, doi: https://doi.org/10.3103/S1068798X14030150
[16] Tamarkin M.A., Shevtsov S.N., Klimenko A.A. Modelling of a single interaction process between a free abrasive pellet and the workpiece. Avtomatizatsiya i sovremennye tekhnologii, 2005, no. 5, pp. 308–312. (In Russ.).
[17] Mirzajanzada A.X., Gurbanov R.S., Ahmadov Z.M. Hidravlika: ali texniki məktəb və fakültələrüçün dərslik. Bakı, Maarif nəşiriyyatı, 1990. 280 s.
[18] Gadirov N.B. Nəzəri mexanika kursu. Bakı Universiteti nəşiriyyatı, 1996. 550 s.