Dynamic Diagnostic 3D Simulation of a Grinding Machine Spindle. Hybrid Simulation Method
Authors: Shirshov A.G. | Published: 09.09.2022 |
Published in issue: #9(750)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: hybrid simulation method, spatial dynamic model, support stiffness asymmetry, rotor vibration diagnostics, grinding machine spindle |
We use a grinding machine spindle as an example to consider a hybrid (numerical and analytical) method of simulating a rotor with a rigid shaft. The paper describes a spatial dynamic model of the rotor constructed via this method that takes into account support stiffness asymmetry. We show that introducing support stiffness asymmetry allows the spatial simulation to explain a number of physical phenomena, including spectrum frequency splitting, which are fundamentally impossible to explain when using flat axially symmetric models.
References
[1] Khomyakov V.S., Kochinev N.A., Sabirov F.S. The modeling and calculation of dynamics of spindle assemblies. Vestnik UGATU, 2009, vol. 12, no. 2, pp. 69–75. (In Russ.).
[2] Sabirov F.S., Bogan A.N., Mikhaylov I.S. [Dynamic characteristics of spindle units of CNC lathes batch]. Stankostroenie i innovatsionnoe mashinostroenie. Problemy i tochki rosta [Machine-tool building and innovative machine building. Problems and growth points]. Ufa, UGATU Publ., 2020, pp. 164–168. (In Russ.).
[3] Ragul’skis K.M., ed. Avtomatizirovannyy raschet kolebaniy mashin [Automated calculation of machines oscillations]. Leningrad, Mashinostroenie Publ., 1988. 100 p. (In Russ.).
[4] Dos’ko S.I. Parametricheskaya identifikatsiya uprugikh sistem stankov (modal’nyy analiz). Diss. kand. tekh. nauk [Parametric identification of mchines elastic systems (modal analysis). Kand. tech. sci. diss.]. Moscow, Mosstankin Publ., 1987. 242 p. (In Russ.).
[5] Khomyakov V.S., Dos’ko S.I. On taking into account damping property in dynamic computation of machines. Stanki i instrument, 1990, no. 11, pp. 4–7. (In Russ.).
[6] Khomyakov V.S., Dos’ko S.I., Lyu Ts. Identification of elastic machine systems based on modal analysis. Stanki i instrument, 1988, no. 7, pp. 11–14. (In Russ.).
[7] Faddeev D.K., Faddeeva V.N. Vychislitel’nye metody lineynoy algebry [Computational methods of linear algebra]. Moscow, Fizmatgiz Publ., 1960. 656 p. (In Russ.).
[8] JupyterLab: a next-generation notebook interface. URL: https://jupyter.org/ (accessed: 05.05.2022).
[9] Python: a programming language. URL https://www.python.org/ (accessed: 05.05.2022).
[10] Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with NumPy. Nature, 2020, vol. 585, pp. 357–362, doi: https://doi.org/10.1038/s41586-020-2649-2
[11] Hunter J.D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95, doi: https://doi.org/10.1109/MCSE.2007.55