Jet transducer designed for automated monitoring and control systems
Authors: Makarov V.A., Korolev F.A. | Published: 03.02.2023 |
Published in issue: #2(755)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: jet transducer, sensing elements, automated systems, jet power action, pressure sensor, static and dynamic characteristics |
The use of the aerodynamic jet force action effect became widespread in designing the automatic sensors for physical and technical parameters of gases and liquids, converters and control devices. This technical solution provides high sensitivity and accuracy of the measured parameters in the rapidly changing processes increasing the speed of work. Introduction of sensors built on the basis of such technical solution is especially important in the automated control systems for fast technological processes, where control over various parameters should be quick and accurate. The paper considers a jet pneumatic optical pressure transducer based on the jet force action effect on a plate, which dimensions are commensurate with those for the jet cross section. Static and dynamic characteristics of the pneumatic optical transducer were determined, where the cumulative parameters were accepted as the quality factor criterion combining the measurements sensitivity with the natural frequency square. Using this criterion, optimal parameters of the sensing element were derived based on the considered aerodynamic effect.
References
[1] Farmer T. Structural studies of liquids and glasses using aerodynamic levitation. Springer, 2015. 113 p.
[2] Becher T., Neubert M., Rothne L. et al. Effective field theory for jet processes. Phys. Rev. Lett., 2016, vol. 116, no. 19, art. 192001, doi: https://doi.org/10.1103/physrevlett.116.192001
[3] Pritchard P.J. Fox and McDonald’s introduction to fluid mechanics. Wiley, 2011. 896 p.
[4] Bityukov V.K., Nefedov V.I., Simachkov D.S. Non-contact method of measuring surface temperature. Rossiyskiy tekhnologicheskiy zhurnal [Russian Technological Journal], 2019, vol. 7, no. 2, pp. 5–17, doi: https://doi.org/10.32362/2500–316X–2019–7–2–5–17 (in Russ.).
[5] Savenkov A.P., Mordasov M.M., Sychev V.A. Contactless pneumoelectric fluid viscosity measurement device. Izmeritelnaya tekhnika, 2020, no. 9, pp. 43–49, doi: https://doi.org/10.32446/0368–1025it.2020–9–43–49 (in Russ.). (Eng. version: Meas. Tech., 2020, vol. 63, no. 9, pp. 722–728, doi: https://doi.org/10.1007/s11018–021–01845–0)
[6] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno–pnevmaticheskiy proportsionalnyy regulyator [Jet-pneumatic proportional regulator]. Patent RU 2676362. Appl. 28.12.2018, publ. 04.05.2018. (In Russ.).
[7] Makarov V.A., Korolev F.A., Tyutyaev R.E. et al. Struyno–fotokompensatsionnyy proportsionalnyy regulyator [Jet photocompensation proportional regulator]. Patent RU 2680614. Appl. 04.05.2018, publ. 25.02.2019. (In Russ.).
[8] Makarov V.A., Korolev F.A., Makarov A.V. et al. Fotokompensatsionnyy datchik plotnosti gazov [Photocompensuration gas density sensor]. Patent RU 2683803. Appl. 21.06.2018, publ. 02.04.2019. (In Russ.).
[9] Makarov V.A., Korolev F.A., Makarov A.V. et al. Pnevmaticheskiy datchik plotnosti gazov [Pneumatic gas density sensor]. Patent RU 2685433. Appl. 21.06.2018, publ. 18.04.2019. (In Russ.).
[10] Makarov V.A., Korolev F.A., Tyutyaev R.E. et al. Struynyy datchik davleniya [Jet pressure sensor]. Patent RU 2713088. Appl. 25.07.2019, publ. 03.02.2020. (In Russ.).
[11] Makarov V.A., Korolev F.A., Tyutyaev R.E. et al. Fotokompensatsionnyy gigrometr [Potocompensation hygrometer]. Patent RU 2713091. Appl. 25.07.2019, publ. 03.02.2020. (In Russ.).
[12] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno–pnevmaticheskiy integralnyy regulyator [Jet-pneumatic integral regulator]. Patent RU 2768104. Appl. 26.07.2021, publ. 23.03.2022. (In Russ.).
[13] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno–pnevmaticheskiy polupostoyanno rabotayushchiy proportsionalno–integralno–differentsialnyy (PID) regulyator [Jet-pneumatic semi–permanently working proportional–integral–differential (PID) regulator]. Patent RU 2768105. Appl. 26.07.2021, publ. 23.03.2022. (In Russ.).
[14] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno-pnevmaticheskiy proportsionalno-integralno-differentsialnyy (PID) regulyator [Jet–pneumatic proportional–integral–differential (PID) regulator]. Patent RU 2768107. Appl. 26.07.2021, publ. 23.03.2022. (In Russ.).
[15] Shih-J. Pai. Fluid dynamics of jets. D. Van Nostrand Co., 1954. ?227 p. (Russ. ed.: Teoriya struy. Moscow, Fizmatgiz Publ., 1960. 326 p.)
[16] Gurevich M.I. Teoriya struy idealnoy zhidkosti [Theory of ideal fluid jets]. Moscow, Nauka Publ. 1979. 536 p. (In Russ.).
[17] Abramovich G.N. Teoriya turbulentnykh struy [Theory of turbulent jets]. Moscow, Ekolit Publ., 2011. 715 p. (In Russ.).
[18] Makarov V.A., Korolev F.A., Tyutyaev R.E. et al. Datchik registratsii pnevmoimpulsov nizkogo davleniya [Low pressure pneumatic pulse logging sensor]. Patent RU 2713087. Appl. 25.07.2019, publ. 03.02.2020. (In Russ.).
[19] Ivanova G.M., Kuznetsov N.D., Chistyakov V.S. Teplotekhnicheskie izmereniya i pribory [Heat engineering measurements and devices]. Moscow, Izd-vo MEI Publ., 2005. 460 p. (In Russ.).
[20] Korobov V.B. Teoriya i praktika ekspertnykh metodov [Theory and practice of exert methods]. Moscow, Infra-M Publ., 2019. 281 p. (In Russ.).