Ultrasonic quality control of the aerial vehicle fiberglass structural elements impregnation with the organic resins
Authors: Chulkov D.I., Terekhin A.V., Tipikin M.E., Dumansky A.M. | Published: 28.02.2023 |
Published in issue: #3(756)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: ultrasonic control, impregnation quality, fiberglass heat resistance |
Fiberglass products after molding and heat treatment are impregnated with the organosilicon resin to increase heat resistance followed by polymerization by heat treatment. A method for non-destructive quality control of the composite-profile products impregnation made of fiberglass plastics with the organosilicon resin is proposed. Results of experimental work are presented on the study of alteration in the longitudinal ultrasonic waves speed in structural elements of the aerial vehicles made of fiberglass before and after impregnation with the organosilicon resin, i.e. the MFSS-8 product. Besides, alteration in the longitudinal ultrasonic waves speed in the fiberglass samples violating the impregnation technology are demonstrated.
References
[1] Rusin M.Yu. Proektirovanie golovnykh obtekateley raket iz keramicheskikh i kompozitsionnykh materialov [Design of a rocket from ceramics and composites]. Moscow, Bauman MSTU Publ., 2005. 64 p. (In Russ.).
[2] Sokolov V.I., ed. Radioprozrachnye izdeliya iz stekloplastikov [Radiotransparent products from fibreglass]. Moscow, Mir Publ., 2002. 368 p. (In Russ.).
[3] Prigoda V.A., Kokunko V.S. Obtekateli antennykh letatelnykh apparatov [Fairing of aerial aircraft]. Moscow, Mashinostroenie Publ., 1970. 285 p. (In Russ.).
[4] Kaplun V.A. Obtekateli antennykh SVCh [Fairings of aerial UHF]. Moscow, Sovetskoe radio Publ., 1974. 239 p. (In Russ.).
[5] Rusin M.Yu., Pashutina T.A., Salnikova T.V. et al. Sposob izgotovleniya izdeliy iz stekloplastikov [Method of manufacture of articles from glass-reinforced plastics]. Patent RU 2266928. Appl. 19.07.2004, publ. 27.12.2005. (In Russ.).
[6] Rusin M.Yu., Vasilenko V.V., Romashin A.G. et al. Composite materials for radio-transparent aircrafts domes. Novye ogneupory [New Refractories], 2014, no. 10, pp. 19–23. (In Russ.).
[7] Mikheev K.G., Obnovlenskiy P.A. Sposob kontrolya kachestva propitki nemetallicheskogo materiala [Method for quality control of nonmetallic materials dipping]. Inventor’s certificate SU 267997. Appl. 08.01.1969, publ. 02.04.1970.
[8] Chulkov D.I., Terekhin A.V., Dumansky A.M. et al. Experimental study of the correlation between the elastic modulus of polymer composite materials and the velocity of ultrasonic waves. MATEC Web Conf., 2020, vol. 329, art. 02031, doi: https://doi.org/10.1051/matecconf/202032902031.
[9] Chulkov D.I., Terekhin A.V., Tipikin M.E. et al. Ultrasonic non-destructive testing structural uniformity of composite materials and structures on their basis. Kompozity i nanostruktury [Composites and Nanostructures], 2021, vol. 13, no. 2, pp. 47–52, doi: https://doi.org/10.36236/1999-7590-2021-13-2-47-52 (in Russ.).
[10] Murashov V.V. Kontrol i diagnostika mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov akusticheskimi metodami [Control and dyagnostics of multilayer constructions from polymer composites by acoustic methods]. Moscow, Spektr Publ., 2016. 244 p. (In Russ.).
[11] Murashov V.V. Ultrasonic control of the strength properties of polymer composite materials. Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials.], 2016, vol. 82, no. 10, pp. 47–55. (In Russ.).
[12] Murashov V.V. Assessment of accumulation degree of microdamages of pcm structure in structures determined by nondestructive methods. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2016, no. 3, pp. 73–81. (in Russ.).
[13] Ermolov I.N., Lange Yu.V. Nerazrushayushchiy kontrol. T. 3. Ultrazvukovoy control [Nondestructive control. Vol. 3. Ultrasound control]. Moscow, Mashinostroenie Publ., 2004. 864 p. (In Russ.).
[14] Zatsepin A.F. Akusticheskiy control [Acoustic control]. Ekaterinburg, Izd-vo Ural. un-ta Publ., 2016. 211 p. (In Russ.).
[15] Landau L.D., Lifshits E.M. Teoriya uprugosti [Elasticity theory]. Moscow, Nauka Publ., 1987. 246 p. (In Russ.).
[16] Aleshin N.P., Belyy V.E., Vopilkin A.Kh. et al. Metody akusticheskogo kontrolya metallov [Acoustic control methods for metals]. Moscow, Mashinostroenie Publ., 1989. 456 p. (In Russ.).
[17] Mastitskiy S.E., Shitikov V.K. Statisticheskiy analiz i vizualizatsiya dannykh s pomoshchyu R [Statistic analysis and data visualization using R]. Moscow, DMK-press Publ., 2015. 496 p. (In Russ.).
[18] GOST R ISO 16269-4-2017. Natsionalnyy standart Rossiyskoy Federatsii. Statisticheskie metody. Statisticheskoe predstavlenie dannykh. Chast 4. Vyyavlenie i obrabotka vybrosov [State standard GOST R ISO 16269-4-2017. Statistical methods. Statistical data presentation. Part 4. Detection and treatment of outliers]. Moscow, Standartinform Publ., 2017. 48 p. (In Russ.).
[19] GOST 32794–2014. Kompozity polimernye. Terminy i opredeleniya [State standard GOST 32794–2014. Polymer composites. Terms and definitions]. Moscow, Standartinform Publ., 2015. 94 p. (In Russ.).