Pneumatic controllers based on the jet force action effect
Authors: Makarov V.A., Kazaryan A.Z., Korolev F.A. | Published: 28.03.2023 |
Published in issue: #4(757)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: pneumatic regulators, jet force action, static characteristics, proportional regulator, proportional integral differential regulator, semi-permanent operating proportional regulator |
The paper considers schemes of pneumatic regulators, which operation principle is based on the jet force action effect on the flat plate. The main nodes of such regulators include the plate support and the compensatory circuit of the regenerative feedback forming the basis for building pneumatic control circuits that implement the basic laws of regulation. The proposed devices are able to improve static characteristics due to their linearity. Schemes are provided of aerostatic bearing, regenerative feedback, jet-pneumatic proportional and proportional-integral controllers, precession and differentiation block, proportional integral differential controller and semi-proportional controller.
References
[1] Mordasov M.M., Mordasov M.D., Mozgova G.V. Pneumatic method and fluid density control device. Vestnik TGTU [Transactions TSTU], 2019, vol. 25, no. 3, pp. 406–411, doi: https://doi.org/10.17277/vestnik.2019.03, pp. 406–411. (In Russ.).
[2] Makarov V.A., Korolev F.A., Makarov A.V. et al. Pnevmaticheskiy datchik plotnosti gazov [Pneumatic gas density sensor]. Patent RU 2685433. Appl. 21.06.2018, publ. 18.04.2019.
[3] Stefan-Mugur S., Corneliu B. CFD study on convective heat exchange between impinging gas jets and solid surfaces. Energy Procedia, 2016, vol. 85, pp. 481–488, doi: https://doi.org/10.1016/J.EGYPRO.2015.12.231
[4] Iulia R.D., Ioana L.O., Diana B. et al. Impact of Newtonian liquid jets on smooth and patterned solid walls. Energy Procedia, 2017, vol. 112, pp. 186–193, doi: https://doi.org/10.1016/J.EGYPRO.2017.03.1081
[5] Makarov V.A., Korolev F.A., Tyutyaev R.E. Impulse mode of physical and technical gases parameters control based on the jet force action effect. IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1047, art. 12014, doi: https://doi.org/10.1088/1757-899X/1047/1/012014
[6] Hwang H.Y., Irons G.A. A water model study of impinging gas jets on liquid surfaces. Metall. Mater. Trans. B, 2012, vol. 43, no. 2, pp. 302–315, doi: https://doi.org/10.1007/s11663-011-9613-3
[7] Becher T., Neubert M., Rothne L. et al. Effective field theory for jet processes. Phys. Rev. Lett., 2016, vol. 116, no. 19, art. 192001, doi: https://doi.org/10.1103/PhysRevLett.116.192001
[8] Farmer T. Structural studies of liquids and glasses using aerodynamic levitation. Springer, 2015. 113 p.
[9] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno-pnevmaticheskiy proportsionalnyy regulyator [Jet-pneumatic proportional regulator]. Patent RU 2676362. Appl. 04.05.2018, publ. 28.12.2018. (In Russ.).
[10] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno-pnevmaticheskiy proportsionalno-integralnyy (PI) regulyator [Jet-pneumatic proportional-integral (PI) controller]. Patent RU 2773623. Appl. 26.07.2021, publ. 06.06.2022. (In Russ.).
[11] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno-pnevmaticheskiy proportsionalno-integralno-differentsialnyy (PID) regulyator [Jet-pneumatic proportional-integral-differential (PID) regulator]. Patent RU 2768107. Appl. 26.07.2021, publ. 23.03.2022. (In Russ.).
[12] Makarov V.A., Korolev F.A., Makarov A.V. et al. Struyno-pnevmaticheskiy poluproportsionalnyy regulyator [Jet-pneumatic semi-proportional regulator]. Patent RU 2773115 Appl. 06.08.2021, publ. 30.05.2022. (In Russ.).
[13] Hari P., Rajesh K., Dharamvir D. A review on air bearing: working and advantages over traditional bearing. IJRME, 2016, vol. 4, no. 1, pp. 1–3.
[14] Simek J., Lindovsky P. Development of aerodynamic bearing support for application in air cycle machines. Appl. Comput. Mech., 2014, no. 8, pp. 101–114.
[15] Karpov A.G. Teoriya avtomaticheskogo upravleniya. Ch. 1 [Theory of automated control. P. 1]. Tomsk, TML-Press Publ., 2011. 201 p. (In Russ.).
[16] Usynin Yu.S. Teoriya avtomaticheskogo upravleniya [Theory of automated control]. Chelyabinsk, Izdatelskiy tsentr YuUrGU Publ., 2010. 176 p. (In Russ.).
[17] Ferner V. Anschauliche Regelungstechnik. Berlin, Technik, 1960. 380 p. (Russ. ed.: Pnevmaticheskie pribory nizkogo davleniya. Moscow, Mir Publ., 1964. 317 p.)