Developing a method for the electron work function determination in the aerospace systems parts by measuring the contact potential difference
Authors: Oleshko V.S. | Published: 11.04.2025 |
Published in issue: #4(781)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: electron work function, solid metal, surface energy, non-destructive testing, linear regression |
Increasing the efficiency in non-destructive testing of the aerospace systems metal parts remains an urgent task. The contact potential difference method is related to the electrical type of non-destructive testing of the machine parts and is a promising option. The paper studies the problem of accuracy in determining the electron work function in the solid metals and alloys using the contact potential difference method. It shows that the existing technique does not allow for an accurate determination of the work function when measuring the contact potential difference in the air. Based on the experimental study results, a formula is obtained that provides a more accurate computation of the work function based on the contact potential difference measured values. The obtained formula forms a basis for creating a technique that is universal and could be applied in scientific research, mechanical engineering and operation of the aerospace systems.
EDN: EOCPYD, https://elibrary/eocpyd
References
[1] Martynyuk A.V., Kuritsyna V.V., Siluyanova M.V. Investigation of the influence of cutting modes on the efficiency of the process of rough milling of aircraft engine parts. STIN, 2023, no. 6, pp. 17–20. (In Russ.).
[2] Nagornov A.Yu., Parafes S.G., Turkin I.K. Modelirovanie v problemakh aerouprugoy ustoychivosti i dinamicheskogo povedeniya tonkostennykh konstruktsiy bespilotnykh apparatov [Modelling in problems of aeroelastic stability and dynamic behaviour of thin-walled structures of unmanned vehicles]. Moscow, Izd-vo MAI Publ., 2021. 160 p. (In Russ.).
[3] Karpovich E., Kombaev T., Gueraiche D. et al. Rocket-based versus solar wing-tail Martian UAVs: design, analysis, and trade studies. AS, 2024, doi: https://doi.org/10.1007/s42401-023-00267-w
[4] Aleshin A.K., Kondratyev I.M., Rashoyan G.V. et al. Methods for determining parameters of the mechanism functional characteristics. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2024, no. 5, pp. 38–47. EDN: NMLMRR (In Russ.).
[5] Yurov V.M., Zhangozin K.N. Peierls-Nabarro barrier in the surface layer of allotropic modifications of carbon. Journal of Science. Lyon, 2024, no. 50, pp. 36–45, doi: https://doi.org/10.5281/zenodo.10609838
[6] Aslamazova T.R., Kotenev V.A. The influence of phthalocyanine on the thermogravimetric behavior of acrylic elastomers. Prot. Met. Phys. Chem. Surf., 2023, vol. 59, no. 6, pp. 1230–1238, doi: https://doi.org/10.1134/s207020512370137x
[7] Shebzukhova I.G., Arefyeva L.P. Surface energy and electron work function for polimorphyc modifications of titanium. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Custers, Nanostructures and Nanomaterials], 2023, no. 15, pp. 288–298, doi: https://doi.org/10.26456/pcascnn/2023.15.288 (in Russ.).
[8] Berdibekov A.T., Yurov V.M., Gruzin V.V. et al. The influence of the external environment on microcracks in military equipment parts. Oboronnyy kompleks — nauchno-tekhnicheskomu progressu Rossii [Defense Industry Achievements — Russian Scientific and Technical Progress], 2023, no. 2, pp. 45–50. (In Russ.).
[9] Musokhranov M.V., Antonyuk F.I., Kalmykov V.V. Determination of the value of the surface energy through electron work function. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2014, no. 6. URL: https://science-education.ru/ru/article/view?id=16036 (in Russ.).
[10] Panteleev K.V., Mikitevich V.A., Svistun A.I. et al. [Charge sensitive techniques in deformation of materials studies]. Novye materialy i tekhnologii: poroshkovaya metallurgiya, kompozitsionnye materialy, zashchitnye pokrytiya, svarka. Mat. 15-y Mezhd. nauch.-tekh. konf. [New Materials and Technologies: Powder Metallurgy, Composite Materials, Protective Coatings, Welding. Proc. 15th Int. Sci.-Tech. Conf.]. Minsk, Belorusskaya nauka Publ., 2022, pp. 305–310. (In Russ.).
[11] Fomenko V.S. Emissionnye svoystva materialov [Emission properties of materials]. Kiev, Naukova dumka Publ., 1981. 339 p. (In Russ.).
[12] Oleshko V.S. [Investigation of influence of metal oxides on determination of electron yield work by contact potential difference method]. Aktualnye voprosy prochnosti. Sb. tez. LXVII Mezhd. konf. [Current Issues of Strength. Abs. LXII Int. Conf.]. Ekaterinburg, UGGU Publ., 2024, pp. 231–232. (In Russ.).
[13] Oleshko V.S., Tkachenko D.P., Fedorov A.V. Ustroystvo izmereniya kontaktnoy raznosti potentsialov metallicheskikh detaley aviatsionnoy tekhniki [Device for measuring contact potential difference of metal parts of aviation equipment]. Patent RU 2717747. Appl. 14.08.2019, publ. 25.03.2020. (In Russ.).
[14] Haynes W.M. CRC handbook of chemistry and physics. CRC Press, 2016. 2670 p.
[15] Oleshko V.S. Programma dlya opredeleniya velichiny raboty vykhoda elektronov. Svid. o gos. reg. prog. dlya EVM № 2024615430 [Software for determining the value of electron yield work. Software reg. certificate 2024615430]. Appl. 28.02.2024, publ. 06.03.2024. (In Russ.).