The Effect of the Creep-Feed Grinding Speed on the Morphology and Chemical Composition of the Titanium Alloy Surface
Authors: Nosenko V.A., Nosenko V.A., Koryazhkin A.A., Kremenetsky L.L. | Published: 02.04.2018 |
Published in issue: #3(696)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: titanium alloy, creep-feed grinding, grinding speed, silicon carbide, surface morphology, surface roughness |
This article examines the features of relief formation and chemical composition of a titanium alloy surface machined using creep-feed grinding by a highly porous silicon carbide wheel at various operating speeds. The quality of the machined surface is investigated using a Versa 3D electron microscope. A mechanism of formation of the adhered metal on the ground surface that results from the adhesive-cohesive interaction between the machined material and the abrasive instrument is proposed. Metal adherence occurs mainly at the stage of the constant contact arc length. The morphology of the treated surface at the exit stage is nearing that of the surface morphology formed by pendular grinding. The density of the adhered metal being transferred onto the machined surface increases with an increase of the grinding speed. The thickness of the adhered metal on the titanium alloy surface is determined. The surface roughness is investigated at various cross-sections along the entire length of the workpiece. The differences in surface roughness along the entire surface length, the constant contact arc length and the exit stage are shown. The influence of the grinding speed on the surface roughness is investigated. The presence of silicon carbide crystals on the machined surface is confirmed by the results of a local X-ray spectral microanalysis. The average concentration of silicon becomes higher with the increase of the grinding speed.
References
[1] Poletaev V.A., Volkov D.I. Glubinnoe shlifovanie lopatok turbin [Deep grinding of turbine blades]. Moscow, Mashinostroenie publ., 2006. 272 p.
[2] Nosenko V.A. Kriterii intensivnosti vzaimodeistviia obrabatyvaemogo i abrazivnogo materialov pri shlifovanii [The criterion of intensity of interaction treated, and abrasive materials in the grinding]. Problemy mashinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2001, no. 5, pp. 85–91.
[3] Nosenko V.A., Avilov A.V., Nosenko S.V. Zakonomernosti izmeneniia sily ploskogo glubinnogo shlifovaniia [Laws of change of force of flat deep grinding]. Spravochnik. Inzhenernyi zhurnal [Handbook. An Engineering journal with appendix]. 2009, no. 7, pp. 10–26.
[4] Xu X., Yu Y., Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear, 2003, vol. 255, no. 7, pp. 1421–1426.
[5] Nosenko V.A., Avilov A.V., Nosenko S.V., Bakhmat V.I. Issledovanie perenosa titana, tsirkoniia i molibdena na karbid kremniia pri mikrotsarapanii [The research of transfer titanium, zirconium, and molybdenum on the silicon carbide after microcutting]. Metalloobrabotka [Metalworking]. 2017, no. 1, pp. 35–39.
[6] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Rentgenospektral’nyi mikroanaliz poverkhnosti karbida kremniia posle mikrotsarapaniia titana [X-ray spectral microanalysis of the surface of carbide of silicon after the microscratching of titanium]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta. Seriia «Mashinostroenie» [Bulletin of South Ural State University. Series «Mechanical Engineering Industry»]. 2015, vol. 15, no. 1, pp. 69–79.
[7] Nosenko V.A., Fetisov A.V., Nosenko S.V., Kharlamov V.O. Intensivnost’ kontaktnogo vzaimodeistviia i perenos materialov pri shlifovanii i mikrotsarapanii tugoplavkikh metallov [Contact interaction intensity and material transfer at grinding and refractory metal micro-scratching]. Naukoemkie tekhnologii v mashinostroenii [Science Intensive Technologies in Mechanical Engineering]. 2017, no. 10, pp. 9–18.
[8] Nosenko S.V., Nosenko V.A., Krutikova A.A., Kremenetskii L.L. Issledovanie khimicheskogo sostava poverkhnostnogo sloia titanovogo splava pri shlifovanii ego krugom iz karbida kremniia bez ispol’zovaniia SOTS [The study of the chemical composition of the surface layer of titanium alloy with grinding his circle of silicon carbide without the use of SOTS]. STIN [Russian Engineering Research]. 2015, no. 1, pp. 26–29.
[9] Starkov V.K. Shlifovanie vysokoporistymi krugami [Highly porous grinding circles]. Moscow, Mashinostroenie publ., 2007. 688 p.
[10] Nosenko V.A., Nosenko S.V. Ploskoe glubinnoe shlifovanie pazov v zagotovkakh iz titanovogo splava s nepreryvnoi pravkoi shlifoval’nogo kruga [Flat deep groove grinding in titanium alloy block with continuous dressing grinding wheel]. Vestnik mashinostroeniia [Russian Engineering Research]. 2013, no. 4, pp. 74–79.
[11] Nosenko S.V., Nosenko V.A., Kremenetskii L.L. Vliianie pravki abrazivnogo instrumenta na sostoianie rel’efa obrabotannoi poverkhnosti titanovogo splava pri vstrechnom glubinnom shlifovanii [Influence of abrasive tool dressing on state of relief of machined surface of titanium alloy at counter deep grinding]. Vestnik mashinostroeniia [Russian Engineering Research]. 2014, no. 7, pp. 64–68.
[12] Starkov V.K. Teoreticheskie i tekhniko-ekonomicheskie predposylki profil’nogo glubinnogo shlifovaniia s nepreryvnoi pravkoi kruga []. Vestnik mashinostroeniia [Russian Engineering Research]. 2010, no. 12, pp. 39–43.
[13] Nosenko V.A., Nosenko S.V. Deep grinding of titanium alloy with continuous wheel correction. Russian Engineering Research, 2010, vol. 30, no. 11, pp. 1124–1128.
[14] Nosenko V.A., Larionov N.F., Egorov N.I., Volkov M.P. Vybor kharakteristiki abrazivnogo instrumenta i SOZh dlia glubinnogo shlifovaniia [The choice of the characteristics of the abrasive tool and the coolant chambers]. Vestnik mashinostroeniia [Russian Engineering Research]. 1989, no. 5, pp. 17–21.
[15] Nosenko V.A., Zhukov V.K., Vasil’ev A.A., Nosenko S.V. Poputnoe i vstrechnoe glubinnoe shlifovanie poverkhnosti nepolnogo tsikla s periodicheskoi pravkoi kruga [A down and reversed deep grinding of non-full surface with periodical wheel’s sharpening]. Vestnik mashinostroeniia [Russian Engineering Research]. 2008, no. 5, pp. 44–50.
[16] Nosenko V.A., Nosenko S.V. Poputnoe i vstrechnoe glubinnoe shlifovanie titanovogo splava s periodicheskoi pravkoi kruga [Incidental and oncoming deep grinding of titanium alloy with periodical wheel dressing]. Vestnik mashinostroeniia [Russian Engineering Research]. 2010, no. 10, pp. 66–71.
[17] Nosenko V.A., Nosenko S.V. Tekhnologiia shlifovaniia [Grinding technology]. Volgograd, IUNL VolgSTU publ., 2011. 425 p.
[18] Khudobin L.V., Unianin A.N. Minimizatsiia zasalivaniia shlifoval’nykh krugov [To minimize the clogging of grinding wheels]. Ul’ianovsk, Ul’ianovskii gos. tekhn. un-t publ., 2007. 299 p.
[19] Nosenko V.A., Zhukov V.K., Zotova S.A., Nosenko S.V. Spetsifika udaleniia materiala na razlichnykh etapakh ploskogo glubinnogo shlifovaniia [Specificity of material removal at various stages flat deep grinding]. STIN [Russian Engineering Research]. 2008, no. 3, pp. 23–28.
[20] Nosenko V.A., Nosenko S.V. Matematicheskie modeli narabotki i rezhushchei sposobnosti dlia razlichnykh etapov ploskogo glubinnogo shlifovaniia gorizontal’nykh poverkhnostei krugom priamogo profilia [Mathematical Models of Operating Time and Cutting Capacity for Various Stages of Flat Creep Feed Grinding of Horizontal Surface by Circle of Direct Profile]. Problemy mashinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2010, no. 4, pp. 92–98.
[21] Nosenko S.V., Nosenko V.A., Bairamov A.A. Vliianie pravki abrazivnogo instrumenta i napravleniia dvizheniia stola na sherokhovatost’ obrabotannoi poverkhnosti pri glubinnom shlifovanii zagotovok iz titanovykh splavov [The effect of dressing the abrasive tool and the direction of movement of the table to the machined surface roughness during deep grinding of workpieces made of titanium alloys]. STIN [Russian Engineering Research]. 2015, no. 1, pp. 21–26.