Nonlinear Optimization of Operating Parameters of Turning by the Penalty Function Method
Authors: Grubyi S.V. | Published: 28.04.2018 |
Published in issue: #4(697)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: parametric optimization, penalty function, Newton’s method, gradient descent method, surface roughness, cutting power |
Turning belongs to mechanical processing by cutting where the processing schedule is the main characteristic of the operation. It determines the aggregate parameters of the technological process in a certain period of time. This article examines parametric nonlinear optimization of operating parameters of turning using the internal penalty function, the minimum of which is calculated by Newton method and the gradient descent method. The variable part of the production cost with constraints by the number of parts, surface roughness and cutting power is selected as the objective function. Algorithms are constructed, and a comparative analysis of these methods is performed. Based on the results obtained, it is shown that the optimal values of the operating parameters correspond to the intersection point of the constraint level lines.
References
[1] Bez"iazychnyi V.F., Aver’ianov I.N., Kordiukov A.V. Raschet rezhimov rezaniia [Calculation of cutting data]. Rybinsk, RSATU publ., 2009. 185 p.
[2] Grubyi S.V. Metody optimizatsii rezhimnykh parametrov lezviinoi obrabotki [Methods to optimize the operating parameters of the blade processing]. Moscow, Bauman Press, 2008. 96 p.
[3] Korotchenko A.G., Kumagina E.A., Smoriakova V.M. Vvedenie v mnogokriterial’nuiu optimizatsiiu [Introduction to multi-criteria optimization]. Nizhnii Novgorod, Nizhegorodskii gosuniversitet publ., 2017. 55 p.
[4] Nogin V.D. Priniatie reshenii pri mnogikh kriteriiakh [Decision-making at many criteria]. Sankt-Petersburg, UTAS publ., 2007. 104 p.
[5] Pestretsov S.I. Komp’iuternoe modelirovanie i optimizatsiia protsessov rezaniia [Computer simulation and optimization of cutting processes]. Tambov, TSTU publ., 2009. 104 p.
[6] Pestretsov S.I., Altunin K.A., Sokolov M.V., Odnol’ko V.G. Kontseptsiia sozdaniia sistemy avtomatizirovannogo proektirovaniia protsessov rezaniia v tekhnologii mashinostroeniia [The concept of creating of computer-aided design of cutting processes in mechanical engineering technology]. Moscow, Publishing house Spektr, 2012. 212 p.
[7] Issledovanie operatsii [Operation research]. Ed. Zarubin V.S., Krishchenko A.P. Moscow, Bauman Press, 2004. 440 p.
[8] Metody optimizatsii [Optimization method]. Ed. Zarubin V.S., Krishchenko A.P. Moscow, Bauman Press, 2001. 440 p.
[9] Moiseev S. Universal derivative-free optimization method with quadratic convergence. Available at: https://arxiv.org/ftp/arxiv/papers/1102/1102.1347.pdf.
[10] Svirshchev V.I., Tarasov S.V., Savlov A.N., Kuz’minok I.M. Parametricheskaia optimizatsiia metodov mekhanicheskoi obrabotki materialov na osnove T–Q kharakteristik protsessa rezaniia [Parametric optimization of methods for machining materials based on T–Q characteristics of the cutting process]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Samara Scientific Center of the Russian Academy of Sciences]. 2017, vol. 19, no. 4, pp. 27–32.
[11] Grubyi S.V. Optimizatsiia protsessa mekhanicheskoi obrabotki i upravlenie rezhimnymi parametrami [Optimization of the machining process and control regime parameters]. Moscow, Bauman Press, 2014. 149 p.
[12] Gurevich Ia.L. Rezhimy rezaniia trudnoobrabatyvaemykh materialov. Spravochnik [Cutting hard materials. Reference]. Moscow, Mashinostroenie publ., 1986. 240 p.