The Influence of the Direction and Geometry of the Working Tool on the Stress-Strain State of Cylindrical Parts in Oscillating Burnishing
Authors: Zaides S.A., Nguyen Van Hinh | Published: 04.09.2018 |
Published in issue: #8(701)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: oscillating burnishing, residual stresses, depth of the plastic zone, deformation zone, rotational angle of the working tool, profile radius of the tool |
The finishing and hardening technology for cylindrical parts of the shaft type by oscillating burnishing is considered in this article. Using computer simulation, a finite element model of oscillating burnishing is developed to determine the stress-stain state in the deformation zone and the hardened parts depending on the rotational angle and the profile radius of the working tool. An increase in the profile radius from 1 to 8 mm results in an increase in the maximum residual equivalent compressive stresses by 45 %. With a positive rotational angle of the tool (when its direction coincides with the direction of the longitudinal feed), equal 45°, the residual compressive stresses reach the minimum value. When the rotational angle of the tool is increased from –30° to –88° in the direction opposite to the direction of the longitudinal feed, the residual stresses increase sharply, and the quality of the surface layer deteriorates. The depth of the hardened layer can vary by 34 % for different profile radii of the deforming tool, and by 70–75 % at different rotational angles of the tool.
References
[1] Zaides S.A., Nguen Van Khin’. Vliianie parametrov ostsilliruiushchego vyglazhivaniia nasherokhovatost’ uprochnennykh poverkhnostei [Oscillating burnishing parameters effect on hardened surface roughness]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University]. 2017, no. 4, pp. 22–29.
[2] Klepikov V.V., Bodrov A.N. Tekhnologicheskie protsessy almaznogo vyglazhivaniya [Technological processes of diamond smoothing]. Moscow, Vysshaya shkola publ., 2004. 320 p.
[3] Papshev D.D. Otdelochno-uprochniaiushchaia obrabotka poverkhnostnym plasticheskim deformirovaniem [Finishing and hardening treatment by surface plastic deformation]. Moscow, Mashinostroenie publ., 1987. 152 p.
[4] Bliumenshtein V.Iu., Smelianskii V.M. Mekhanika tekhnologicheskogo nasledovaniia na stadiiakh obrabotki i ekspluatatsii detalei mashin [Mechanics of technological inheritance at the stages of processing and operation of machine parts]. Moscow, Mashinostroenie-1 publ., 2007. 400 p.
[5] Emel’ianov V.I. Pravka detalei mashin poverkhnostnym plasticheskim deformirovaniem [Editing of machine parts by surface plastic deformation]. Novgorod, NovSU publ., 1996. 127 p.
[6] Suslov A.G. Kachestvo poverkhnostnogo sloia detalei mashin [The quality of surface layer of machine parts]. Moscow, Mashinostroenie publ., 2000. 320 p.
[7] Popova V.V. Poverkhnostnoe plasticheskoe deformirovanie i fiziko-khimicheskaia obrabotka [Surface plastic deformation and physical and chemical treatment]. Rubtsovsk, Rubtsovskii industrial’nyi institute publ., 2013. 98 p.
[8] VishniakovIa.D., Piskarev V.D. Upravlenie ostatochnymi napriazheniiami v metallakh i splavakh [Control of residual stresses in metals and alloys]. Moscow, Metallurgiia publ., 1989. 253 p.
[9] Mrochek Zh.A., Makarevich S.S., Kozhuro L.M., Pashkevich M.F., Il’yushchenko A.F. Ostatochnye napryazheniya [Residual stress]. Minsk, Tekhnoprint publ., 2003. 352 p.
[10] Skorokhodov A.N., Zudov E.G., Kirichkov A.A., Petrenko Iu.P. Ostatochnye napriazheniia v profiliakh i sposoby ikh snizheniia [Residual stresses in profiles and ways to reduce them]. Moscow, Metallurgiia publ., 1985. 185 p.
[11] Torbilo V.M. Raschet optimal’nogo usiliya pri almaznom vyglazhivanii [The calculation of the optimal effort when the diamond pressing]. Stanki i instrument [Machines and tools]. 1970, no. 2, pp. 25–26.
[12] Bliumenshtein V.Iu., Makhalov M.S. Raschetnaia model’ ostatochnykh napriazhenii uprochnennogo poverkhnostnogo sloia pri razmernom sovmeshchennom obkatyvanii [Calculation model of the residual stresses of the hardened surface layer with dimensional combined run-in]. Vestnik KuzGTU [Vestnik of the KuzSTU]. 2008, no 5, pp. 50–58.
[13] Zaides S.A., Gorbunov V.F., Gorbunov A.V. Raschet profil’nogo radiusa rolika pri obkatke nezhestkikh valov [Calculation of roller profile radius under non-rigid shaft rolling]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University]. 2015, no. 3, pp. 40–44.
[14] Zaides S.A., Nguen Van Khin’. Vliianie kinematiki lokal’nogo nagruzheniia na napriazhenno-deformirovannoe sostoianie v ochage deformatsii [Local loading kinematics effect on stress-strain state in deformation zone]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University]. 2017, no. 6, pp. 22–29.
[15] Zaides S.A., Ngo Kao Kyong. Otsenka napriazhennogo sostoianiia pristesnennykh usloviiakh lokal’nogo nagruzheniia [Evaluation of stress state in cramped conditions of local loading]. Uprochniaiushchie tekhnologii i pokrytiia [Strengthening Technologies and Coatings]. 2016, no. 10, pp. 6–9.
[16] Zaides S.A., Klimova L.G. Upravlenie tekhnologicheskimi ostatochnymi napriazheniiami v malozhestkikh valakh okhvatyvaiushchim deformirovaniem [Control of technological residual stresses in low-rigid shafts by covering deformation]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University]. 2006, no. 4, pp. 46–51.
[17] Zaides S.A., Nguen Van Khin’, Fam Dak Fyong. Ustroistvo dlia poverkhnostnogo plasticheskogo deformirovaniia [Device for surface plastic deformation]. Patent RF no. 2626522, 2017. 1 p.
[18] Bakov K.A. ANSYS. Spravochnik pol’zovatelia [ANSYS. User manual]. Moscow, DMK Press, 2005. 640 p.
[19] Bruiaka V.A., Fokin V.G., Soldusova E.A., Glazunova N.A., Adeianov I.E. Inzhenernyi analiz v ANSYS Workbench. Ch. 1 [Engineering analysis in Ansys Workbench. Pt. 1]. Samara, SSTU publ., 2010. 271 p.
[20] Chen Xiaolin, Liu Yiijun. Finite Element Modeling and Simulation with ANSYS Workbench. CRC Press, 2014. 411 p.