The Development of a Digital Twin of a Cutting Tool for Mechanical Production
Authors: Kabaldin Y.G., Shatagin D.A., Kuzmishina A.M. | Published: 15.04.2019 |
Published in issue: #4(709)/2019 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: cutting tool, neural network models, digital twin, choice of coating composition, tool wear |
A digital model (twin) of a cutting tool based on neural network modeling is proposed in this work. It is shown that the developed virtual model makes it possible to optimize the composition and structure of wear-resistant coating and to determine the processing modes that ensure the maximum wear resistance of the cutting tool. The optimization can be performed before the actual manufacturing of the cutting tool by varying the input data of the neural network has taken place. A digital passport of the cutting tool allows the consumer to avoid buying a counterfeit product. Information security issues are considered.
References
[1] Frankel A., Larsson J. There is a better way: digital double increases the efficiency of design and manufacturing processes. SAD/CAM/CAE Observer, 2016, no. 3, pp. 36–40 (in Russ.).
[2] Buriko A.V. Digital evolution, or why RUSAL «goes» to the number. Digital manufacturing, 2017, no. 2, pp. 18–23 (in Russ.).
[3] Kabaldin Yu.G., Bilenko S.V., Seryy S.V. Upravleniye dinamicheskimi protsessami v tekhnologicheskikh sistemakh mekhanoobrabotki na osnove iskusstvennogo intellekta [Control of dynamic processes in technological systems of machining on the basis of artificial intelligence]. Komsomolsk-on-Amur, KnASU publ., 2003. 201 p.
[4] Iskusstvennyy intellekt i kiber-fizicheskiye mekhanoobrabatyvayushchiye sistemy v tsifrovom proizvodstve [Artificial intelligence and cyber-physical machining systems in digital manufacturing]. Ed. Kabaldin Yu.G. Nizhniy Novgorod, NNSTU publ., 2018. 271 p.
[5] Bobrov V.F. Osnovy teorii rezaniya metallov [Fundamentals of metal cutting theory]. Moscow, Mashinostroyeniye publ., 1975. 344 p.
[6] Kabaldin Yu.G., Laptev I.L., Shatagin D.A., Seryy S.V. Diagnostics of output parameters of cutting process in real time mode based on fractal and wavelet analyses using National Instruments and Nvidia CUDA software and hardware. Vestnik mashinostroyeniya, 2014, no. 8, pp. 80–82 (in Russ.).
[7] Kabaldin Iu.G., Laptev I.L., Shatagin D.A., Zotov V.O., Seryi S.V. Intelligent Diagnostic System the Plant and Tool Wear. Russian Internet Journal of Industrial Engineering, 2014, no. 2, pp. 47–50 (in Russ.). Available at: http://www.indust-engineering.ru/issues/2014/2014-2.pdf (accessed 15 December 2018).
[8] Kabaldin Iu.G., Laptev I.L., Shatagin D.A., Vytnov Iu.V., Golubev S.V. Evaluation of cutting tool in real time based approaches nonlinear dynamics using Nvidia CUDA software environment LABVIEW. Transactions of NNSTU n.a. R.E. Alekseev, 2013, no. 5(102), pp. 114–121 (in Russ.).
[9] Kabaldin Yu.G., Shatagin D.A., Zotov V.O. Structure-energy approach to wear process and diagnostics of hard-alloy cutting tool. Vestnik mashinostroeniya, 2016, no. 5, pp. 79–85 (in Russ.).
[10] Korotkiy S. Neyronnyye seti: osnovnyye polozheniya. Available at: http://gigabaza.ru/doc/103732.html (accessed 15 December 2018).
[11] Vereshchaka A.S. Rabotosposobnost’ rezhushchego instrumenta s pokrytiyem [Performance of coated cutting tools]. Moscow, Mashinostroyeniye publ., 1993. 336 p.
[12] Kabaldin Yu.G., Kretinin O.V., Shatagin D.A., Vlasov E.E. Vybor sostava i struktury iznosostoykikh nanostrukturnykh pokrytiy dlya tverdosplavnogo rezhushchego instrumenta na osnove kvantovo-mekhanicheskogo modelirovaniya [Selection of the composition and structure of wear-resistant nanostructured coatings for carbide cutting tools based on quantum mechanical modeling]. Moscow, Innovatsionnoye mashinostroyeniye publ., 2017. 216 p.
[13] Kabaldin Yu.G., Shatagin D.A., Laptev I.L., Zotov V.O. Rezets tokarnyy [Lathe cutter]. Patent RF no. 159948, 2016.
[14] Kabaldin Yu.G., Vlasov E.E., Kuz’mishina A.M. Quantum-mechanical modeling of adhesion energy of nanostructured coatings with cutting tool and with material to be processed. Strengthening Technologies and Coatings, 2018, vol. 14, no. 8, pp. 339–343 (in Russ.).
[15] Zavodinskiy V.G., Kabaldin Yu.G. Shear module and adhesion energy of nanocoatings used for cutting tools. Mechanics of composite materials and structures, 2018, vol. 24, no. 2, pp. 207–220 (in Russ.).