New Approach to Three-Coordinate Milling of Large-Sized Surfaces of Second Order
Authors: Sayapin S.N., Bryyndina O.O., Vanina P.G. | Published: 29.11.2021 |
Published in issue: #12(741)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: surfaces of the second order, three-coordinate milling, parabolic surface, geometry control |
The study introduces a new approach to precision machining of large-sized surfaces of second order on a three-coordinate horizontal milling machine. The new technology does not require the use of unique large-size boring lathes or five-axis milling machines. Three-axis horizontal milling machines do not need to be equipped with additional equipment that provides the workpiece with the missing rotational and translational movements relative to the machine table. The proposed technology is based on the use of a new approach that combines the geometric parameters of the second-order machined surface, the spherical surface of the cutting tool, i.e. cutter, and their position relative to the working table. The use of the developed technology will improve the efficiency and accuracy of machining the surface of second order, as well as simplify the control program and technological support due to the absence of movable equipment. The study gives an example of practical implementation and shows the possibility of independent control of the machined parabolic surface geometry using a three-coordinate horizontal milling machine.
References
[1] Dal’skiy A.M. ed. Tekhnologiya konstruktsionnykh materialov [Technology of construction materials]. Moscow, Mashinostroenie Publ., 2005. 592 p. (In Russ.).
[2] Groover M.P. Fundamentals of modern manufacturing. Materials, processes, and systems. Wiley, 2010. 1024 p.
[3] Oberg E. Machinery’s handbook. New York, Industrial Press, 2012. 2700 p.
[4] Polyak V.S., Bervalds E.Ya. Pretsizionnye konstruktsii zerkal’nykh radioteleskopov [Precision constructions of reflector radar telescope]. Riga, Zinatne Publ., 1990. 526 p. (In Russ.).
[5] Litvinov N. Machine tools and huge pressing machines. RITM, 2014, no. 6, pp. 28–30. (In Russ.).
[6] Stanki-kolomna-karusel’nye. URL: https://kzts.su (data obrashcheniya 11 maya 2021).
[7] MTs-2 — Tsentr obrabatyvayushchiy vysokoskorostnoy pyatikoordinatnyy [MTs-2 – universal high-speed processing center]. mashinform.ru: website. URL: https://mashinform.ru/oborudovanie-stanki/m/mtc-2.shtml (accessed: 11.05.2021). (In Russ.).
[8] Apro K. Secrets of 5-axis machining. Industrial Press, 2008. 184 p.
[9] Warkentin A., Bedi S., Ismail F. Five-axis milling of spherical surfaces. Int. J. Mach. Tools Manuf., 1996, vol. 36, no. 2, pp. 229–243, doi: https://doi.org/10.1016/0890-6955(95)98763-W
[10] Warkentin A., Ismail F., Bedi S. Comparison between multi-point and other 5-axis tool positioning strategies. Int. J. Mach. Tools Manuf., 2000, vol. 40, no. 2, pp. 185–208, doi: https://doi.org/10.1016/S0890-6955(99)00058-9
[11] Gray P.J., Warkentin A., Ismail F., et al. Graphics-assisted rolling ball-method for 5-axis surface machining. Comput. Aided Des., 2004, vol. 36, no. 7, pp. 653–663, doi: https://doi.org/10.1016/S0010-4485(03)00141-6
[12] Delone B.V., Raykov D.A. Analiticheskaya geometriya. T. 2 [Analytic geometry. Vol. 2]. Moscow, Leningrad, Gostekhizdat Publ., 1949. 516 p. (In Russ.).
[13] Vechtomov V.A., Golubtsov M.E., Mozharov E.O. Mirror collimator of millimetre range. Vestnik MGTU im. N.E. Baumana, 2012, no. 8, doi: http://dx.doi.org/10.18698/2308-6033-2012-8-340 (in Russ.).
[14] Borisov A.A., Parshchikov A.A. Konstruktsiya, tekhnologiya izgotovleniya i metodika kontrolya otrazhayushchey poverkhnosti antenny radioteleskopa RT-16 MGTU [Construction, production technology and control method for reflecting antenna surface of radar telescope RT-16 MGTU]. V: Konstruktsii zerkal’nykh antenn. Ch. 1 [Mirror antennae constructions. Vol. 1]. Riga, Zinatne Publ., 1990, pp. 221–227. (In Russ.).
[15] Vechtomov V.A. [Millimeter-wave airborne antenna test facility based on mirror collimator]. Reshetnevskie chteniya [Reshetnev Readings], 2015, vol. 1, pp. 87–91. (In Russ.).
[16] Karpachev A.Yu. Inhere dynamic characteristics of rotative round saws at nonuniform heating. Vestnik mashinostroeniya, 2006, no. 5, pp. 32–36. (In Russ.).
[17] Karpachev A.Yu., Nikolaev S.M. Dynamic research of circular saw with radial compensators. Vestnik mashinostroeniya, 2013, no. 12, pp. 37–38. (In Russ.).
[18] Sayapin S.N., Sinev A.V. Sposob obrabotki poverkhnosti vtorogo poryadka i ustroystvo dlya ego osushchestvleniya [Method for working second-order surface and apparatus for performing the same]. Patent RU 2170161. Appl. 25.05.1999, publ. 10.07.2001. (In Russ.).
[19] Sayapin S.N. New method for second-order surface processing. STIN, 2002, no. 1, pp. 30–32. (In Russ.).
[20] Sayapin S.N. Analiz i sintez raskryvaemykh na orbite pretsizionnykh krupnogabaritnykh mekhanizmov i konstruktsiy kosmicheskikh radioteleskopov lepestkovogo tipa. Diss. dok. tekh. nauk [Analysis and synthesis of precision large-size expandable on orbit mechanisms and space leaf-type radar telescopes constructions. Kand. tech. sci. diss.]. Moscow, IMASh RAN Publ., 2003. 446 p. (In Russ.).
[21] Beklemishev D.V. Kurs analiticheskoy geometrii i lineynoy algebry [Course of analytic geometry and linear algebra]. Moscow, Nauka Publ., 1984. 320 p. (In Russ.).
[22] Sayapin S.N Universal quickly assembled parabolic reflector with regulate surface for operating in microwave band. Vestnik mashinostroeniya, 2013, no. 11, pp. 6–13. (In Russ.).