Modeling the Process of Blades Shaping with Intraoperative Correction of Cutting Parameters
Authors: Tanalin I.Sh. | Published: 27.01.2022 |
Published in issue: #2(743)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: machining, gas turbine engine blade, adaptive control, mirror method, secant method |
The blades of gas turbine engines have a complex shape of the profiled part and low rigidity. In blade manufacture, there occur feather geometry errors, exceeding the tolerances of feather’s shape and dimensions. To minimize these errors, we propose a technological chain of mechanical processing of a blade on adaptively controlled machine tools, in which various cutting parameters and the trajectory of the cutting tool are adjusted to obtain the required geometry of the part. The use of intraoperative control allows calculating the correction value depending on the deviations of the actual parameters from the nominal ones. We built an ideal mathematical model, which will serve as the basis for the nominal shape of the blade, as well as a corrected geometric model of the blade for the subsequent operation. To calculate the correcting values ??of the parameters, we propose to use the mirror and secant methods. The mirror method consists in adding the error caused by the previous machining process to the current nominal depth of cut. The secant method is to express the nominal depth of cut of the next process as the sum of the nominal depth of cut of the previous process and the correction value. These methods make it possible to take into account the errors arising from previous operations.
References
[1] Tikhonov N.T. Teoriya lopatochnykh mashin aviatsionnykh gazoturbinnykh dvigateley [Theory of blade machines for aircraft gas-turbine engines]. Samara, SGAU Publ., 2001. 154 p. (In Russ.).
[2] Lunev A.N., Moiseeva L.T., Yunusov F.S. Adaptivnoe formoobrazovanie lopatok shlifovaniem [Adaptive shaping of blades by grinding]. Kazan’, Izd-vo KGTU Publ., 2002. 135 p. (In Russ.).
[3] Granovskiy G.I., Granovskiy V.G. Rezanie metallov [Cutting of metals]. Moscow, Vysshaya shkola Publ., 1985. 304 p. (In Russ.).
[4] Tanalin I.Sh. Advanced manufacturing technology for gas turbine engine blades. Vestnik KGTU im. A.N. Tupoleva [Vestnik KNRTUn.a. A.N. Tupolev], 2020, vol. 76, no. 3, pp. 50–55. (In Russ.).
[5] Kostenko Yu.T., Lyubchik L.M. Sistemy upravleniya s dinamicheskimi modelyami [Control systems with dynamic models]. Khar’kov, Osnova Publ., 1996. 212 p. (In Russ.).
[6] Aguado S., Santolaria J., Samper D., et al. Improving a real milling machine accuracy through an indirect measurement of its geometric errors. J. Manuf. Syst., 2016, vol. 40, no. 1, pp. 26–36, doi: https://doi.org/10.1016/j.jmsy.2016.05.006
[7] Hu Q., Chen Y., Yang J. On-line contour error estimation and control for corner smoothed five-axis tool paths. Int. J. Mech. Sci., 2020, vol. 171, art. 105377, doi: https://doi.org/10.1016/j.ijmecsci.2019.105377
[8] Rao V.S., Rao P.V.M. Tool deflection compensation in peripheral milling of curved geometries. Int. J. Mach. Tools Manuf., 2006, vol. 46, no. 15, pp. 2036–2043, doi: https://doi.org/10.1016/j.ijmachtools.2006.01.004
[9] Ratchev S., Liu S., Huang W., et al. An advanced FEA based force induced error compensation strategy in milling. Int. J. Mach. Tools Manuf., 2006, vol. 46, no. 5, pp. 542–551, doi: https://doi.org/10.1016/j.ijmachtools.2005.06.003
[10] Wang M.H., Sun Y. Error prediction and compensation based on interference-free tool paths in blade milling. Int. J. Adv. Manuf. Technol., 2014, vol. 71, no. 5–8, pp. 1309–1318, doi: https://doi.org/10.1007/s00170-013-5535-3
[11] Fiorentino A., Feriti G.C., Giardini C., et al. Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system. J. Manuf. Syst., 2015, vol. 35, pp. 215–222, doi: https://doi.org/10.1016/j.jmsy.2015.02.003
[12] Wu D., Wang H., Zhang K., et al. Research on adaptive CNC machining arithmetic and process for near-net-shaped jet engine blade. J. Intell. Manuf., 2020, vol. 31, no. 3, pp. 717–744, doi: https://doi.org/10.1007/s10845-019-01474-z
[13] Cho M.W., Kim G.H., Seo T.L., et al. Integrated machining error compensation method using OMM data and modified PNN algorithm. Int. J. Mach. Tools Manuf., 2006, vol. 46, no. 12-13, pp. 1417–1427, doi: https://doi.org/10.1016/j.ijmachtools.2005.10.002
[14] Poniatowska M. Free-form surface machining error compensation applying 3D CAD machining pattern model. Comput. Aided Des., 2015, vol. 62, pp. 227–235, doi: https://doi.org/10.1016/j.cad.2014.12.003
[15] Haeussinger C., Brunner L., Martiner A., et al. On-machine measuring method for the reconstruction of additively manufactured near-net shaped parts. Procedia CIRP, 2020, vol. 92, pp. 175–180, doi: https://doi.org/10.1016/j.procir.2020.05.186
[16] Huang N., Bi Q., Wang Y., et al. 5-axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement. Int. J. Mach. Tools Manuf., 2014, vol. 84, pp. 1–8, doi: https://doi.org/10.1016/j.ijmachtools.2014.04.004
[17] Altintas Y., Tuysuz O., Habibi M., et al. Virtual compensation of deflection errors in ball end milling of flexible blades. CIRP Annals, 2018, vol. 67, no. 1, pp. 365–368, doi: https://doi.org/10.1016/j.cirp.2018.03.001
[18] Dong Y., Zhang D., Bu K. et al. Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades. Int. J. Adv. Manuf. Technol., 2011, vol. 57, no. 9-12, pp. 1245–1258, doi: https://doi.org/10.1007/s00170-011-3681-z
[19] Inozemtsev A.A., Sandratskiy V.L. Gazoturbinnye dvigateli [Gas-turbine engines]. Perm’, Aviadvigatel’ Publ., 2006. 1204 p. (In Russ.).
[20] Zhang Y., Chen Z.T., Ning T. Reverse modeling strategy of aero-engine blade based on design intent. Int. J. Adv. Manuf. Technol., 2015, vol. 81, no. 9, pp. 1781–1796, doi: https://doi.org/10.1007/s00170-015-7232-x
[21] Vinogradov L.V., Kostyukov A.V. Computer-aided designing of turbine blades with parabolic contours. Izvestiya MGTU MAMI, 2013, vol. 1, no. 1, pp. 41–47. (In Russ.).
[22] Yunusov F.S. Formoobrazovanie slozhnoprofil’nykh poverkhnostey shlifovaniem [Shaping of figurine surfaces by grinding]. Moscow, Mashinostroenie Publ., 1987. 248 p. (In Russ.).
[23] Vedmid’ P.A., Sulinov A.V. Programirovanie obrabotki v NX CAM [Programming of processing with NX CAM]. Moscow, DMK Press Publ., 2014. 304 p. (In Russ.).
[24] Lovygin A.A., Teverovskiy L.V. Sovremennyy stanok s ChPU i CAD/CAM sistema [Up-to-date CNC machine and CAD/CAM system]. Moscow, DMK Press Publ., 2017. 280 p. (In Russ.).