Analysis of the features of the hardware and technological design of the process of high-temperature activation of carbon material
Authors: Shubin I.N., Popova A.A. | Published: 09.08.2023 |
Published in issue: #8(761)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: high-temperature alkaline activation, synergetic effect, equipment, diagnostic researches, carbon material |
The relevance of research in the development of activated carbon materials with a high specific surface area and porosity, which can be used as materials for the separation or storage of various liquid and gaseous media, is shown. A plurality of approaches to the implementation of the activation process is noted, characterized mainly by the accumulation of experimental data and laboratory studies. The process of high-temperature activation of carbon material was studied using the synergistic effect of two activators on the activated material. The features of the flow of this process and the relationship between the regime parameters and the design of the equipment are established. The characteristics of the obtained activated carbon material, namely the parameters of the specific surface area and porosity, are analyzed. Solutions are proposed aimed at reducing the ambiguity in the design of hardware and technological design of the high-temperature activation process.
References
[1] Fenelonov V.B. Poristyy uglerod [Porous carbon]. Novosibirsk, Institut kataliza SO RAN Publ., 1995. 513 p. (In Russ.).
[2] Mishchenko S.V., Tkachev A.G. Uglerodnye nanomaterialy. Proizvodstvo svoystvo primenenie [Carbon nanomaterials. Production, properties, application]. Moscow, Mashinostroenie Publ., 2008. 320 p. (In Russ.).
[3] Mukhin V.M., Klushin V.N. Proizvodstvo i primenenie uglerodnykh adsorbentov [Production and application of carbon adsorbents]. Moscow, RKhTU Publ., 2012. 305 p. (In Russ.).
[4] Dyachkova T.P., Tkachev A.G. Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok [Methods for functionalization and modification of carbon nanotubes]. Moscow, Spektr Publ., 2013. 152 p. (In Russ.).
[5] Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castell D. et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressure. Carbon, 2007, vol. 45, no. 2, pp. 293–303, doi: https://doi.org/10.1016/j.carbon.2006.09.022
[6] Carvalho A.P., Cardoso B., Pires J. et al. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon, 2003, vol. 41, no. 14, pp. 2873–2876, doi: https://doi.org/10.1016/S0008-6223(03)00323-3
[7] Yoon S.H., Lim S., Song Y. et al. KOH activation of carbon nanofibers. Carbon, 2004, vol. 42, no. 8–9, pp. 1723–1729, doi: https://doi.org/10.1016/j.carbon.2004.03.006
[8] Lee S.M., Lee S.C., Jung J.H. et al. Pore characterization of multi-walled carbon nanotubes modified by KOH. Chem. Phys. Lett., 2005, vol. 416, no. 4–6, pp. 251–255, doi: https://doi.org/10.1016/j.cplett.2005.09.107
[9] Jimenez V., Sanchez P., Valverde J.L. et al. Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. J. Colloid Interface Sci., 2009, vol. 336, no. 2, pp. 712–722, doi: https://doi.org/10.1016/j.jcis.2009.04.017
[10] Lozano-Castello D., Calo J.M., Cazorla-Amoros D. et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, vol. 45, no. 13, pp. 2529–2536, doi: https://doi.org/10.1016/j.carbon.2007.08.021
[11] Popova A.A., Shubin I.N. Apparatus and technological design of the production process of activated highly porous carbon material. J. Phys.: Conf. Ser., 2021, vol. 1942, art. 012025, doi: https://doi.org/10.1088/1742-6596/1942/1/012025
[12] Popova A.A., Shubin I.N. Analysis of the factors affecting the instrumentation of the technological process of the activated carbon material production. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 1, pp. 20–30, doi: http://dx.doi.org/10.18698/0536-1044-2022-1-20-30 (in Russ.).
[13] Popova A.A., Aliev R.E., Shubin I.N. Features of nanoporous carbon material synthesis. Advanced Materials and Technologies, 2020, no. 3, pp. 28–32.
[14] Benaddi H., Bandosz T.J., Jagiello J. et al. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, vol. 38, no. 5, pp. 669–674, doi: https://doi.org/10.1016/S0008-6223(99)00134-7
[15] Zheng Z., Gao Q. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors. J. Power Sources, 2011, vol. 196, no. 3, pp. 1615–1619, doi: https://doi.org/10.1016/j.jpowsour.2010.09.010
[16] Chesnokov N.V., Mikova N.M., Ivanov I.P. et al. Synthesis of carbon sorbents by chemical modi? cation of fossil coals and plant biomass. Zhurnal Sibirskogo federalnogo universiteta. Ser. Khimiya [Journal of Siberian Federal University. Chemistry], 2014, vol. 7, no. 1, pp. 42–53. (In Russ.).
[17] Fierro V., Torne-Fernandez V., Celzard A. Highly microporous carbons prepared by activation of kraft lignin with KOH. Stud. Surf. Sci. Catal., 2007, vol. 160, pp. 607–614, doi: https://doi.org/10.1016/S0167-2991(07)80078-4
[18] Raymundo-Pinero E., Azaıs P., Cacciaguerra T. et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon, 2005, vol. 43, no. 4, pp. 786–795, doi: https://doi.org/10.1016/j.carbon.2004.11.005
[19] Raymundo-Pinero E., Cazorla-Amoros D., Linares-Solano A. et al. High surface area carbon nanotubes prepared by chemical activation. Carbon, 2002, vol. 40, no. 9, pp. 1614–1617, doi: https://doi.org/10.1016/S0008-6223(02)00134-3
[20] Popova A.A., Shubin I.N. Study of technological parameters of activation, effecting on characteristics of nanoporous carbon material. Materialovedenie, 2022, no. 11, pp. 3–8. (In Russ.).
[21] Niu J.J., Nong J. Effect of temperature on chemical activation of carbon nanotubes. Solid State Sci., 2008, vol. 10, no. 9, pp. 1189–1193, doi: https://doi.org/10.1016/j.solidstatesciences.2007.12.016
[22] Volfkovich Y., Sosenkin V., Rychagov A. et al. Carbon material with high specific surface area and high pseudocapacitance: possible application in supercapacitors. Microporous Mesoporous Mater., 2021, vol. 319, art. 111063, doi: https://doi.org/10.1016/j.micromeso.2021.111063
[23] Kopac T., Erdogan F.O. Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube–graphite mixture. J. Ind. Eng. Chem., 2009, vol. 15, no. 5, pp. 730–735, doi: https://doi.org/10.1016/j.jiec.2009.09.054
[24] Wepasnick K.A., Smith B.A., Schrote K.E. et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, vol. 49, no. 1, pp. 24–36, doi: https://doi.org/10.1016/j.carbon.2010.08.034
[25] Xiao Z., Yang Z., Nie H. et al. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithiumesulfur batteries. J. Mater. Chem. A, 2014, vol. 2, no. 23, pp. 8683–8689, doi: https://doi.org/10.1039/C4TA00630E
[26] Dong W., Xia W., Xie K. et al. Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon, 2017, vol. 121, pp. 452–462, doi: https://doi.org/10.1016/j.carbon.2017.06.019
[27] Popova A.A., Shubin I.N. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik TGTU [Transactions of the TSTU], 2022, vol. 28, no. 3, pp. 476–486, doi: https://doi.org/10.17277/vestnik.2022.03.pp.476-486 (in Russ.).
[28] Popova A.A., Shubin I.N. Analysis of the effect of regime parameters of high-temperature chemical activation process on the structural material of the equipment. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 8, pp. 24–32, doi: https://doi.org/10.18698/0536-1044-2022-8-24-32 (in Russ.).
[29] Kolman-Ivanov E.E., ed. Mashiny khimicheskikh proizvodstv. Atlas konstruktsiy [Chemical production machines. Atlas of designs]. Moscow, Mashinostroenie Publ., 1981. 118 p. (In Russ.).
[30] Pershin V.F. Mashiny barabannogo tipa. Osnovy teorii, rascheta i konstruirovaniya [Machines of drum type. Basics of theory, calculation and design]. Voronezh, Izd-vo VGU Publ., 1990. 168 p. (In Russ.).
[31] Timonin A.S. et al. Mashiny i apparaty khimicheskikh proizvodstv [Machines and devices of chemical production]. Kaluga, Noosfera Publ., 2016. 856 p. (In Russ.).
[32] Stěrbáček Z., Tausk P. Míchání v chemickém průmslu. Praha, SNTL. 330 p. (Russ. ed.: Peremeshivanie v khimicheskoy promyshlennosti. Leningrad, GKhI Publ., 1963. 416 p.)
[33] Todes O.M., Tsitovich O.B. Apparaty s kipyashchim zernistym sloem [Apparatuses with fluidized granular layer]. Leningrad, Khimiya Publ., 1981. 296 p. (In Russ.).
[34] Jimenez V., Diaz J.A., Sanchez P. et al. Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chem. Eng. J., 2009, vol. 155, no. 3, pp. 931–940, doi: https://doi.org/10.1016/j.cej.2009.09.035
[35] Jiang Q., Zhao Y. Effects of activation conditions on BET specific surface area of activated carbon nanotubes. Microporous Mesoporous Mater., 2004, vol. 76, no. 1–3, pp. 215–219, doi: https://doi.org/10.1016/j.micromeso.2004.08.020
[36] Tkachev A.G., Popova A.A., Shubin I.N. Reaktor dlya aktivatsii mikro- i mezoporistogo uglerodnogo materiala [Reactor for activating a micro- and mesoporous carbon material]. Patent RU 2768879 Appl. 09.04.2021, publ. 25.03.2022. (In Russ.).
[37] Tkachev A.G., Popova A.A., Shubin I.N. Reaktor dlya sinteza aktivirovannogo uglerodnogo materiala [Reactor for synthesising an activated carbon material]. Patent RU 2780200. Appl. 27.09.2021, publ. 20.09.2022. (In Russ.).