Optimization of the turning operating conditions using exponential and polynomial equations
Authors: Grubyi S.V. | Published: 09.10.2023 |
Published in issue: #10(763)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: operating conditions, exponential equations, polynomial equations, linear programming, nonlinear programming, wear rate |
The paper considers issues of calculating and optimizing the turning operating conditions applying various methods: sequential calculation using the exponential equations with correction factors, linear programming, nonlinear programming with penalty function and optimal control, including stabilization of the tool wear rate. To implement the developed algorithms, exponential equations were introduced either taken from the reference literature, or those which parameters were calculated based on the simulation results. To calculate the operating conditions using the optimal control algorithms, the previously obtained and calculated polynomial equations were used. It is shown that operating conditions of the control algorithm with the tool wear rate stabilization make it possible to relatively better assess such output indicators as the average cost of processing and technological productivity, while simultaneously ensuring the specified roughness parameter of the machined surface.
References
[1] Grubyi S.V. Raschet rezhimov rezaniya dlya operatsiy mekhanicheskoy obrabotki [Calculation of cutting regimes for operation of mechanical processing]. Moscow, Vologda, Infra–Inzheneriya Publ., 2021. 200 p. (In Russ.).
[2] Bez’’yazychnyy V.F., Aver’yanov I.N., Kordyukov A.V. Raschet rezhimov rezaniya [Calculation of cutting regimes]. Rybinsk, RGATA Publ., 2009. 185 p. (In Russ.).
[3] Gurevich Ya.L., Gorokhov M.V., Zakharov V.I. et al. Rezhimy rezaniya trudnoobrabatyvaemykh materialov [Cutting modes of hard-to-cut materials]. Moscow, Mashinostroenie, 1986. 240 p. (In Russ.).
[4] Guzeev V.I., ed. Rezhimy rezaniya dlya tokarnykh i sverlilno-frezerno-rastochnykh stankov s chislovym programmnym upravleniem [Cutting modes for numerically controlled lathes and milling and boring machines]. Moscow, Mashinostroenie Publ., 2007. 364 p. (In Russ.).
[5] Grubyi S.V. Matematicheskoe modelirovanie i optimizatsiya mekhanicheskoy obrabotki [Mathematical modelling and optimization of machining]. Moscow, Vologda, Infra-Inzheneriya Publ., 2022. 212 p. (In Russ.).
[6] Korotchenko A.G., Kumagina E.A., Smoryakova V.M. Vvedenie v mnogokriterial’nuyu optimizatsiyu [Introduction into multicriteria optimization]. Nizhniy Novgorod, NNGU Publ., 2017. 55 p. (In Russ.).
[7] Nogin V.D. Prinyatie resheniy pri mnogikh kriteriyakh [Multicriteria decision making]. Sankt-Petersburg, YuTAS Publ., 2007. 104 p. (In Russ.).
[8] Pestretsov S.I. Kompyuternoe modelirovanie i optimizatsiya protsessov rezaniya [Computer modelling and optimization of cutting processes]. Tambov, Izd-vo TGTU Publ., 2009. 104 p. (In Russ.).
[9] Pestretsov S.I., Altunin K.A., Sokolov M.V. et al. Kontseptsiya sozdaniya sistemy avtomatizirovannogo proektirovaniya protsessov rezaniya v tekhnologii mashinostroeniya [Concept of computer-aided design system for cutting processes in mechanical engineering technology]. Moscow, Spektr Publ., 2012. 212 p. (In Russ.).
[10] Vasilyev A.S., Kutin A.A., eds. Spravochnik tekhnologa-mashinostroitelya. T. 2 [Handbook of mechanical engineering technologist. Vol. 2]. Moscow, Innovatsionnoe mashinostroenie Publ., 2018. 818 p. (In Russ.).
[11] Zaikin P.V., Pogorelovskiy M.A., Mikshina V.S. Approximation of experimental data functions by high order polinomial. Vestnik kibernetiki [Proceedings in Cybernetics], 2015, no. 4, pp. 129–134. (In Russ.).
[12] Petryanin D.L., Yurkov N.K. Increasing the precision of approximation models. Nadezhnost’ i kachestvo slozhnykh system [Reliability & Quality of Complex Systems], 2016, no. 2, pp. 59–66. (In Russ.).
[13] Maslovskaya A.G. Approksimatsiya funktsiy v zadachakh obrabotki eksperimental’nykh dannykh [Function approximation in problems of experimental data processing]. Amurskiy gos. un-t Publ., 2021. 51 p. (In Russ.).
[14] Zarubin V.S., Krishchenko A.P., eds. Metody optimizatsii [Optimization methods]. Moscow, Bauman MSTU Publ., 2001. 440 p. (In Russ.).
[15] Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V. et al. Matematicheskaya teoriya optimalnykh protsessov [Mathematical theory of optimum processes]. Moscow, Nauka Publ., 1983. 392 p. (In Russ.).
[16] Lin Y.J., Agrawal A., Fang Y. Wear progressions and tool life enhancement with AlCrN coated inserts in high-speed dry and wet steel lathing. Wear, 2008, no. 264, no. 3–4, pp. 226–234, doi: https://doi.org/10.1016/j.wear.2007.03.007
[17] Khrais S.K., Lin Y.J. Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear, 2007, no. 262, no. 1–2, pp. 64–69, doi: https://doi.org/10.1016/j.wear.2006.03.052
[18] Park K.H., Kwon P.Y. Flank wear of multi-layer coated tool. Wear, 2011, vol. 270, no. 11–12, pp. 771–780, doi: https://doi.org/10.1016/j.wear.2011.01.030