Features of hardware and technological process formation in obtaining the compacted carbon materials
Authors: Shubin I.N. | Published: 26.12.2023 |
Published in issue: #1(766)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: highly porous carbon material, material compaction, parameter diagnostics, rational technological modes |
The paper demonstrates relevance of the research aimed at developing the advanced sorption materials based on the highly porous carbon material. It considers main stages of the sorption materials production including alkaline activation at the temperature of 400...750°C, post-processing and the resulting material compaction with research and determination of the most rational technological modes in its implementation. The study resulted in obtaining the activated and compacted carbon materials. The first material had specific surface area and porosity, respectively, of more than 2700 m2/g and 1.3 cm3/g, the second – of more than 2000 m2/g and 0.84 cm3/g. Sorption capacity of the activated and compacted carbon materials in regard to the organic dye (methylene blue) exceeded 2000 and 1700 mg/g, respectively, which showed the material ability to be a highly effective sorbent of the organic pollutants of the aqueous solutions. Based on the study results, schematic diagram of the hardware and technological process formation in obtaining the compacted highly porous carbon material is proposed, features of its implementation are presented.
References
[1] Fomkin A.A., Petukhova G.A., Alekhina M.B. et al., eds. Aktualnye fiziko-khimicheskie problemy adsorbtsii i sinteza nanoporistykh materialov [Actual physical and chemical problems of adsorption and synthesis of nanoporous materials]. Moscow IFKhE RAN Publ., 2022. 274 p. (In Russ.).
[2] Mishchenko S.V., Tkachev A.G. Uglerodnye nanomaterialy: proizvodstvo svoystvo primenenie [Carbon nanomaterials. Production property application]. Moscow, Mashinostroenie Publ., 2008. 320 p. (In Russ.).
[3] Popova A.A., Shubin I.N. et al. Osobennosti razrabotki perspektivnykh sorbentov novogo pokoleniya na osnove uglerodnogo nanomateriala [Features of development of perspective sorbents of a new generation based on carbon nanomaterial]. Novye materialy i perspektivnye tekhnologii. Sb. mat. 6 Mezhdistsiplinarnogo nauch. foruma s mezhd. uchastiem [New Materials and Advanced Technologies. Proc. 6 Interdisciplinary Sci. Forum with Int. Participation]. Moscow, Tsentr nauchno-tekhnicheskikh resheniy Publ., 2020, pp. 733–735. (In Russ.).
[4] Klimov E.S. Prirodnye sorbenty i kompleksony v ochistke stochnykh vod [Natural sorbents and complexons in wastewater treatment]. Ulyanovsk, UlGTU Publ., 2011. 201 p. (In Russ.).
[5] Shubin I.N., Popova A.A. Features of implementation options for the process of high-temperature activation of carbon material. Journal of Advanced Materials and Technologies, 2023, vol. 8, no. 1, pp. 41–48, doi: https://doi.org/10.17277/jamt.2023.01.pp.041-048
[6] Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castell D. et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon, 2007, vol. 45, no. 2, pp. 293–303, doi: http://dx.doi.org/10.1016/j.carbon.2006.09.022
[7] Popova A.A., Shubin I.N. Study of technological parameters of activation, effecting on characteristics of nanoporous carbon material. Materialovedenie, 2022, no. 11, pp. 3–8. (In Russ.).
[8] Carvalho A.P., Cardoso B., Pires J. et al. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon, 2003, vol. 41, no. 14, pp. 2873–2876, doi: https://doi.org/10.1016/S0008-6223(03)00323-3
[9] Popova A.A., Shubin I.N. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik TGTU [Transactions of the TSTU], 2022, vol. 28, no. 3, pp. 476–486, doi: https://doi.org/10.17277/vestnik.2022.03.pp.476-486 (in Russ.).
[10] Lozano-Castello D., Calo J.M., Cazorla-Amoros D. et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, vol. 45, no. 13, pp. 2529–2536, doi: https://doi.org/10.1016/j.carbon.2007.08.021
[11] Dong W., Xia W., Xie K. et al. Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon, 2017, vol. 121, pp. 452–462, doi: https://doi.org/10.1016/j.carbon.2017.06.019
[12] Falco C., Marco-Lozar J.P., Salinas-Torres D. et al. Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon, 2013, vol. 62, pp. 346 –355, doi: https://doi.org/10.1016/j.carbon.2013.06.017
[13] Marco-Lozar J.P., Kunowsky M., Carruthers J.D. et al. Gas storage scale-up at room temperature on high density carbon materials. Carbon, 2014, vol. 76, pp. 123–132, doi: https://doi.org/10.1016/j.carbon.2014.04.058
[14] Seema H., Kemp K.C., Le N.H. et al. Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014, vol. 66, pp. 320–326, doi: https://doi.org/10.1016/j.carbon.2013.09.006
[15] Sevillaa M., Fuertesa A.B., Mokayac R. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. Int. J. Hydrog. Energy, 2011, vol. 36, no. 24, pp. 15658–15663, doi: https://doi.org/10.1016/j.ijhydene.2011.09.032
[16] Kim H.S., Kang M.S., Yoo W.C. Highly enhanced gas sorption capacities of N-doped porous carbon spheres by hot NH3 and CO2 treatments. J. Phys. Chem., 2015, vol. 119, no. 51, pp. 28512–28522, doi: https://doi.org/10.1021/acs.jpcc.5b10552
[17] Gadipelli S., Guo Z.X. Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci., 2015, vol. 69, pp. 1–60, doi: https://doi.org/10.1016/j.pmatsci.2014.10.004
[18] Cychosz K.A., Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 2018, vol. 4, no. 4, pp. 559–566, doi: https://doi.org/10.1016/j.eng.2018.06.001
[19] Melnichenko Y.B., Cristian I., Nidia C. et al. SANS investigations of CO2 adsorption in microporous carbon. Carbon, 2015, vol. 95, pp. 535–544, doi: https://doi.org/10.1016/j.carbon.2015.08.010
[20] Perez-Mendoza M., Schumacher C., Suarez-Garcıa F. et al. Analysis of the microporous texture of a glassy carbon by adsorption measurements and Monte Carlo simulation. Evolution with chemical and physical activation. Carbon, 2006, vol. 44, no. 4, pp. 638–645, doi: https://doi.org/10.1016/j.carbon.2005.09.037
[21] Panella B., Hirscher M., Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 2005, vol. 43, no. 10, pp. 2209–2214, doi: https://doi.org/10.1016/j.carbon.2005.03.037
[22] Meisner G.P., Hu Q. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Nanotechnology, 2009, vol. 20, no. 20, art. 204023, doi: https://doi.org/10.1088/0957-4484/20/20/204023
[23] Wu X., Shaibani M., Smith S.J.D. et al. Microporous carbon from fullerene impregnated porous aromatic frameworks for improving the desalination performance of thin film composite forward osmosis membranes. J. Mater. Chem. A, 2018, vol. 6, no. 24, pp. 11327–11336, doi: https://doi.org/10.1039/C8TA01200H
[24] Zgrzebnicki M., Kałamaga A., Wrobel R. Sorption and textural properties of activated carbon derived from charred beech wood. Molecules, 2021, vol. 26, no. 24, art. 7604, https://doi.org/10.3390/molecules26247604
[25] Olontsev V.F., Farberova E.A., Minkova A.A. et al. Optimization of porous structure of absorbent carbon in the course of technological production. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2015, no. 4, pp. 9–23. (In Russ.).
[26] Tkachev A.G., Memetov N.R., Kucherova A.E. et al. Formovannyy nanostrukturirovannyy mikroporistyy uglerodnyy sorbent i sposob ego polucheniya [Molded nanostructured microporous carbon sorbent and a method for production thereof]. Patent RU 2736586. Appl. 09.07.2019, publ. 18.11.2020. (In Russ.).
[27] Fenelonov V.B. Poristyy uglerod [Porous carbon]. Novosibirsk, Institut kataliza SO RAN Publ., 1995. 513 p. (In Russ.).
[28] Vasiliev L.L., Kanonchik L.E., Kulakov A.G. et al. Activated carbon fiber composites for ammonia, methane and hydrogen adsorption. Int. J. Low Carbon Technol., 2006, vol. 1, no. 2, pp. 95–111, doi: https://doi.org/10.1093/ijlct/1.2.95
[29] Ouyang J., Zhou L., Liu Z. et al. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Sep. Purif. Technol., 2020, vol. 253, art. 117536, doi: https://doi.org/10.1016/j.seppur.2020.117536
[30] Han X., Wang H., Zhang L. Efficient removal of methyl blue using nanoporous carbon from the waste biomass. Water Air Soil Pollut., 2018, vol. 229, no. 2, art. 26, doi: https://doi.org/10.1007/s11270-017-3682-0
[31] Shahkarami S., Azargohar R., Dalai A.K. et al. Breakthrough CO2 adsorption in bio-based activated carbons. J. Environ. Sci., 2015, vol. 34, pp. 68–76, doi: https://doi.org/10.1016/j.jes.2015.03.008
[32] Pérez-Mayoral E., Matos I., Bernardo M. et al. New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts, 2019, vol. 9, no. 2, art. 133, doi: https://doi.org/10.3390/catal9020133
[33] Qian D., Lei C., Wang E.M. et al. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity. ChemSusChem, 2014, vol. 7, no. 1, pp. 291–298, doi: https://doi.org/10.1002/cssc.201300585
[34] Aliev R.E., Popova A.A. Kompaktirovannyy nanoporistyy uglerodnyy material dlya sistem ochistki vozdukha [Compacted nanoporous carbon nanoporous material for air purification systems]. V: Problemy tekhnogennoy bezopasnosti i ustoychivogo razvitiya. Vyp. 12 [Problems of technogenic safety and sustainable development. Iss. 12]. Tambov, TGTU Publ., 2020, pp. 28–31. (In Russ.).
[35] Shubin I.N., Popova A.A. Improving hardware and technological design of the highly porous carbon material production. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 6, pp. 58–65, doi: https://doi.org/10.18698/0536-1044-2023-6-58-65 (in Russ.).