Structural hierarchical scheme of the activated carbon material compaction process
Authors: Shubin I.N. | Published: 03.03.2025 |
Published in issue: #3(780)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: compaction process, activated carbon material, structural hierarchical, technological process, decomposition level, functional hierarchical approach |
The paper demonstrates relevance of the research in development and application of the activated carbon materials. It proposes a structural hierarchical scheme that implements technology of the activated carbon materials compaction with various binders based on the functional hierarchical approach. The paper considers main stages, phases, technological modes and equipment in the hardware and technological execution of the compaction process. It establishes key levels of this process making it possible to increase productivity and efficiency of the activated carbon material compaction technology.
EDN: AENQWR, https://elibrary/aenqwr
References
[1] Fenelonov V.B. Poristyy uglerod [Porous carbon]. Novosibirsk, Institut kataliza SO RAN Publ., 1995. 513 p. (In Russ.).
[2] Aktualnye fiziko-khimicheskie problemy adsorbtsii i sinteza nanoporistykh materialov. Vserossiyskiy simpozium s mezhdunarodnym uchastiem, posvyashchennyy pamyati chl.-korr. RAN V.A. Avramenko. Sbornik trudov simpoziuma [Actual physical and chemical problems of adsorption and synthesis of nanoporous materials. All-Russian symposium with international participation, dedicated to the memory of Corresponding Member of the Russian Academy of Sciences V.A. Avramenko. Proceedings]. Moscow, IFKhE RAN Publ., 2022. 274 p. (In Russ.).
[3] Popova A.A., Aliev R.E., Shubin I.N. Features of nanoporous carbon material synthesis. Adv. Mater. Technol., 2020, no. 3, pp. 28–32.
[4] Shubin I.N., Popova A.A. Study of technological parameters of activation, effecting on characteristics of nanoporous carbon material. Materialovedenie, 2022, no. 11, pp. 3–8. (In Russ.).
[5] Dyachkova T.P., Tkachev A.G. Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok [Methods of functionalisation and modification of carbon nanotubes]. Moscow, Spektr Publ., 2013. 152 p. (In Russ.).
[6] Tkachev A.G., Memetov N.R., Kucherova A.E. et al. Formovannyy nanostrukturirovannyy mikroporistyy uglerodnyy sorbent i sposob ego polucheniya [Molded nanostructured microporous carbon sorbent and a method for production thereof]. Patent RU 2736586. Appl. 09.07.2019, publ. 18.11.2020. (In Russ.).
[7] Popova A.A., Guseynov M.K., Shubin I.N. Features of the technology for producing nanoporous carbon material. Vestnik Dagestanskogo gosudarstvennogo universiteta. Ser. 1. Estestvennye nauki [Herald of Dagestan State University. Ser. 1. Natural Sciences], 2021, vol. 36, no. 4, pp. 7–12, doi: https://doi.org/10.21779/2542-0321-2021-36-4-7-12 (in Russ.).
[8] Benaddi N., Bandosz T.J., Jagiello J. et al. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, vol. 38, no. 5, pp. 669–674, doi: https://doi.org/10.1016/S0008-6223(99)00134-7
[9] Shubin I.N., Popova A.A. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik TGTU [Transactions of the TSTU], 2022, vol. 28, no. 3, pp. 476–486, doi: https://doi.org/10.17277/vestnik.2022.03.pp.476-486 (in Russ.).
[10] Zhu Y., Murali S., Stoller M.D. et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, vol. 332, no. 6037, pp. 1537–1541, doi: https://doi.org/10.1126/science.1200770
[11] Lozano-Castello D., Calo J.M., Cazorla-Amoros D. et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, vol. 45, no. 13, pp. 2529–2536, doi: https://doi.org/10.1016/j.carbon.2007.08.021
[12] Jiménez V., Díaz J.A., Sánchez P. et al. Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chem. Eng. J., 2009, vol. 155, no. 3, pp. 931–940, doi: https://doi.org/10.1016/j.cej.2009.09.035
[13] Teng H., Wang S.C. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation. Carbon, 2000, vol. 38, no. 6, pp. 817–824, doi: https://doi.org/10.1016/S0008-6223(99)00160-8
[14] Rusetsky A.M., ed. Theoretical fundamentals of technological complex designing. Minsk, Belorussian Science, 2012. 239 p.
[15] Chizhik S.A., Kheyfets M.L., Filatov S.A. Prospects for the development of technological systems of composite materials additive synthesis and products shaping. Mekhanika mashin, mekhanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2014, no. 4, pp. 68–74. (In Russ.).
[16] Pukhalskiy V.A. The hierarchy of processes in manufacturing engineering. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii [Fundamental and Applied Problems of Engineering and Technology], 2015, no. 6, pp. 108–113. (In Russ.).
[17] Rukhov A.V., Tarov D.V., Dyachkova T.P. et al. Methods of designing hardware decoration of productions of carbon nanotubes and by-products on their basis. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya [CHEMCHEMTECH], 2019, vol. 62, no. 3, pp. 94–101, doi: https://doi.org/10.6060/ivkkt.20196203.5959 (in Russ.).
[18] Kasatkin A.G. Osnovnye protsessy i apparaty khimicheskoy tekhnologii [Basic processes and apparatuses of chemical technology]. Moscow, Alyans Publ., 2009. 451 p. (In Russ.).
[19] Leontyeva A.I. Oborudovanie khimicheskikh proizvodstv [Equipment of chemical productions]. Moscow, Koloss Publ., 2008. 479 p. (In Russ.).
[20] Makarov Yu.I. Apparaty dlya smesheniya sypuchikh materialov [Apparatuses for mixing of bulk materials]. Moscow, Mashinostroenie Publ., 1973. 215 p. (In Russ.).
[21] Kookos K., Perkins J.D. Regulatory control structure selection of linear systems. Comput. Chem. Eng., 2002, vol. 26, no. 6, pp. 875–887, https://doi.org/10.1016/S0098-1354(02)00013-3
[22] Borisenko A.B., Karpushkin S.V. Hierarchy of processing equipment configuration design problems for multiproduct chemical plants. J. Comput. Syst. Sci. Int., 2014, vol. 53, no. 3, pp. 410–419, doi: https://doi.org/10.1134/S1064230714030046
[23] Niu J.J., Wang J.N. Effect of temperature on chemical activation of carbon nanotubes. Solid State Sci., 2008, vol. 10, no. 9, pp. 1189–1193, doi: https://doi.org/10.1016/j.solidstatesciences.2007.12.016
[24] Frackowiak E., Delpeux S., Jurewicz K. et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett., 2002, vol. 361, no. 1–2, pp. 35–41, doi: https://doi.org/10.1016/S0009-2614(02)00684-X
[25] Lopez-Arevalo I., Banares-Alcantara R., Aldea A. et al. A hierarchical approach for the redesign of chemical processes. Knowl. Inf. Syst., 2007, vol. 12, no. 2, pp. 169–201, doi: https://doi.org/10.1007/s10115-006-0060-4
[26] Zhou Y.M. Designing for complexity: using divisions and hierarchy to manage complex tasks. Organ. Sci., 2012, vol. 24, no. 2, pp. 339–355, doi: https://doi.org/10.1287/orsc.1120.0744
[27] Shubin I.N., Mkrtchyan E.S., Ananyeva O.A. Promising sorbents based on compacted highly porous carbon materials. Journal of Advanced Materials and Technologies, 2023, vol. 8, no. 4, pp. 270–278.