Numerical simulation of the ultra-low-temperature effect on the waterjet focusing tubes
Authors: Galinovsky A.L., kruglov P.V., Yanko M.A., Izotov N.A. | Published: 10.03.2025 |
Published in issue: #3(780)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: heat exchanger, hydroabrasive ultra-jet, focusing tube, cryogenic cooling, mathematical simulation |
Waterjet cutting is a universal method in machining the structural materials widely used in various industries. The study of promising modifications in the ultra-jet machining technology to increase its efficiency is a pressing problem. The paper studies a possibility of cooling the focusing tube in the ultra-jet machining to increase erosion resistance of the jet-forming elements by forming a protective ice film to preserve the tube. It proposes a promising design of the double-circuit spiral heat exchanger to ensure better heat removal from the waterjet system elements subject to the erosive wear. The boundary value problem of the cryogenic heat transfer and heat balance is considered. Mathematical simulation results of focusing the tube cryogenic cooling using the finite element method in the specialized software environment of two different heat exchanger designs are presented. Temperature gradient of the focusing tube material is noticeably improved in comparison with the heat exchanger configuration analog. Temperature difference in the focusing tube material is reduced significantly compared to the previous heat exchanger design.
EDN: BLQZVW, https://elibrary/blqzvw
References
[1] Tarasov V.A., Galinovskiy A.L., Elfimov V.M. Minimization of technological cost price of hydroabrasive cutting taking into account cost and technological parameters of cutting. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2011, no. 4, pp. 46–53, doi: http://dx.doi.org/10.18698/0536-1044-2011-4-46-53 (in Russ.).
[2] Jegaraj J.J.R., Babu N.R. A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. J. Mater. Process. Technol., 2007, vol. 185, no. 1–3, pp. 217–227, doi: https://doi.org/10.1016/j.jmatprotec.2006.03.124
[3] Galinovskiy A.L., Izotov N.A. An experimental study of hydroerosion of surface of a chill metal under the influence of an abrasive-liquid ultra-jet. AIP Conf. Proc., 2021, vol. 2318, art. 150013, doi: https://doi.org/10.1063/5.0035803
[4] Yuvaraj N., Pradeep Kumar M. Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet: a comparative study of the surface integrity approach. Wear, 2016, vol. 362–363, pp. 18–32, doi: https://doi.org/10.1016/j.wear.2016.05.008
[5] Izotov N.A., Galinovskiy A.L., Yanko M.A. [Mathematical modelling of cryogenic cooling of a jet-forming nozzle element of a waterjet cutting machine]. MashTekh 2022. Innovatsionnye tekhnologii, oborudovanie i materialnye zagotovki v mashinostroenii. Sb. tr. mezhd. nauch.-tekh. konf. [MashTech 2022. Innovative Technologies, Equipment and Material Workpieces in Mechanical Engineering. Proc. Int. Sci.-Tech. Conf.] Moscow, Bauman MSTU Publ., 2022, pp. 196–197. EDN NJESGV (in Russ.).
[6] Zolotonosov Ya.D., Vachagina E.K., Krutova I.A. et al. Modern coil apparatuses, their development prospects and calculation theory. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta [Bulletin of the Kazan State Energy University], 2021, vol. 13, no. 1, pp. 52–65. (In Russ.).
[7] Barzov A.A., Galinovskiy A.L., Izotov N.A. Sposob gidroabrazivnoy rezki i ustroystvo dlya ego osushchestvleniya [Method for hydro-abrasive cutting and device for its implementation]. Patent RU 2744633. Appl. 25.08.2020, publ. 12.03.2021. (In Russ.).
[8] Kolpakov V.I., Ilyukhina A.A. Fiziko-matematicheskoe modelirovanie funktsionirovaniya strueformiruyushchego trakta gidroabrazivnoy ustanovki [Physical and mathematical modelling of functioning of the jet-forming path of a waterjet plant]. Moscow, Bauman MSTU Publ., 2021. 36 p. (In Russ.).
[9] Kamalov T.V., Kolpakov V.I. [Influence of the geometry of the jet-forming channel on the parameters of waterjet treatment]. XLVII Akademicheskie chteniya po kosmonavtike. T. 3 [XLVII Academic Readings on Cosmonautics. Vol. 3]. Moscow, Bauman MSTU Publ., 2023, pp. 412–413. EDN AHQNDT (in Russ.).
[10] Abashin M.I., Gerasimova A.M., Vdovin A.A. Import-substituting technology of hydra jetting equipment consumable items production used for processing RST materials. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2016, no. 9, doi: http://dx.doi.org/10.18698/2308-6033-2016-9-1529 (in Russ.).
[11] Varavka V.N., Kudryakov O.V., Grishchenko V.I. Aspects of thermal protection of machine-building and power equipment: application of oxidation-resistant combined nickel-based coatings. Advanced Engineering Research (Rostov-on-Don), 2023, vol. 23, no. 2, pp. 140–154, doi: https://doi.org/10.23947/2687-1653-2023-23-2-140-154 (in Russ.).
[12] Kotovskiy V.N. Teploperedacha [Heat transfer]. Moscow, MGTU GA Publ., 2015. 73 p. (In Russ.).
[13] Segerlind L.J. Applied finite element analysis. Wiley, 1976. (Russ. ed.: Primenenie metoda konechnykh elementov. Moscow, Mir Publ., 1979. 392 p.)
[14] Bruyak V.A., Fokin V.G., Soldusova E.A. et al. Inzhenernyy analiz v ANSYS Workbench. Ch. 1 [Engineering analysis in ANSYS Workbench. P. 1]. Samara, SamGTU Publ., 2010. 271 p. (In Russ.).
[15] Pronin V.A., Zhignovskaya D.V., Tsvetkov V.A. Vvedenie v raschetnuyu platformu Ansys Workbench [Introduction to the calculation platform Ansys Workbench]. Sankt-Petersburg, ITMO Publ., 2019. 46 p. (In Russ.).
[16] Murashov I.D., Petrakov S.A. Ustroystvo dlya gidroabrazivnoy rezki [Device for hydroabrasive cutting]. Patent RU 2393077. Appl. 25.06.2009, publ. 27.06.2010. (In Russ.).
[17] Kirichenko Yu.A., Kozlov S.M., Rusanov K.V. et al. Teploobmen pri kipenii azota i voprosy okhlazhdeniya vysokotemperaturnykh sverkhprovodnikov [Heat transfer at nitrogen boiling and cooling issues of high-temperature superconductors]. Kiev, Naukova Dumka Publ., 1992. 277 p. (In Russ.).
[18] Korkodinov Ya.A. The review of set of k–? models for modeling turbulence. Vestnik PNIPU. Mashinostroenie, materialovedenie [Bulletin PNRPU. Mechanical Engineering, Materials Science], 2013, vol. 15, no. 2, pp. 5–16. (In Russ.).
[19] Perzel V., Flimel M., Krolczyk J. et al. Measurement of thermal emission during cutting of materials using abrasive water jet. Thermal Science, 2017, vol. 21, no. 5, pp. 2197–2203.