On the issue of analyzing potassium content in the carbon material after the alkaline activation
Authors: Shubin I.N., Dyachkova T.P., Baklykova M.A. | Published: 13.07.2025 |
Published in issue: #7(784)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: high-temperature alkaline activation, potassium content, activated carbon material, X-ray fluorescence analysis |
The paper demonstrates relevance of research in design, development and application of the activated carbon materials. It establishes that most attention is paid to studying the final characteristics of a carbon material, and much less is paid to its separate properties and features of the manufacture technological parameters. The activated carbon material was studied using the X-ray fluorescence analysis to determine the potassium compounds content in it depending on the activation process duration. A discrepancy between the expected and experimentally determined potassium content in the experimental samples was established. Possible causes of that discrepancy was considered. The paper proposes hardware technological solutions to neutralizing potassium compounds in the gaseous products of the carbon material high-temperature alkaline activation.
EDN: RHWJKK, https://elibrary/rhwjkk
References
[1] Fenelonov V.B. Poristyy uglerod [Porous carbon]. Novosibirsk, In-t kataliza SO RAN Publ., 1995. 518 p. (In Russ.).
[2] Aktualnye fiziko-khimicheskie problemy adsorbtsii i sinteza nanoporistykh materialov [Actual physical and chemical problems of adsorption and synthesis of nanoporous materials]. Vserossiyskiy simpozium s mezhdunarodnym uchastiem, posvyashchennyy pamyati chl.-korr. RAN V.A. Avramenko [Russ. Symposium with Int. Participation, Dedicated to the Memory of Corresponding Member of the RAS V.A. Avramenko]. Moscow, IFKhE RAN Publ., 2022. 274 p. (In Russ.).
[3] Jiménez V., Sánchez P., Valverde J.L. et al. Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. J. Colloid Interface Sci., 2009, vol. 336, no. 2, pp. 712–722, doi: https://doi.org/10.1016/j.jcis.2009.04.017
[4] Lozano-Castello D., Calo J.M., Cazorla-Amoros D. et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, vol. 45, no. 13, pp. 2529–2536, doi: https://doi.org/10.1016/j.carbon.2007.08.021
[5] Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castell D. et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressure. Carbon, 2007, vol. 45, no. 2, pp. 293–303, doi: https://doi.org/10.1016/j.carbon.2006.09.022
[6] Dyachkova T.P., Tkachev A.G. Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok [Methods of functionalization and modification of carbon nanotubes]. Moscow, Spektr Publ., 2013. 152 p. (In Russ.).
[7] Hirscher M., Becher M., Haluska M. et al. Hydrogen storage in carbon nanostructures. J. Alloys Compd., 2002, no. 330–332, pp. 654–658, doi: https://doi.org/10.1016/S0925-8388(01)01643-7
[8] Olontsev V.F., Farberova E.A., Minkova A.A. et al. Optimization of porous structure of absorbent carbon in the course of technological production. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2015, no. 4, pp. 9–23. (In Russ.).
[9] Popova A.A., Aliev R.E., Shubin I.N. Features of nanoporous carbon material synthesis. Advanced Materials and Technologies, 2020, vol. 3, no. 19, pp. 28–32,
[10] Carvalho A.P., Cardoso B., Pires J., Carvalho M.B. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon, 2003, vol. 41, no. 14, pp. 2873–2876, doi: https://doi.org/10.1016/S0008-6223(03)00323-3
[11] Olivares-Marın M., Fernandez-Gonzalez C., Macıas-Garcıa A. et al. Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Appl. Surf. Sci., 2006, vol. 252, no. 17, pp. 5980–5983, doi: https://doi.org/10.1016/j.apsusc.2005.11.018
[12] Lee S.M., Lee S.C., Jung J.H. et al. Pore characterization of multi-walled carbon nanotubes modified by KOH. Chem. Phys. Lett., 2005, vol. 416, no. 4–6, pp. 251–255, doi: https://doi.org/10.1016/j.cplett.2005.09.107
[13] Popova A.A. Process design of activated carbon material production. Vestnik TGTU [Transactions of the TSTU], 2021, vol. 27, no. 2, pp. 318–327, doi: https://doi.org/10.17277/vestnik.2021.02.pp.318-327 (in Russ.).
[14] Shubin I.N., Popova A.A. Study of technological parameters of activation, effecting on characteristics of nanoporous carbon material. Materialovedenie [Material Science], 2022, no. 11, pp. 3–8. (In Russ.).
[15] Niu J.J., Nong J. Effect of temperature on chemical activation of carbon nanotubes. Solid State Sci., 2008, vol. 10, no. 9, pp. 1189–1193, doi: https://doi.org/10.1016/j.solidstatesciences.2007.12.016
[16] Volfkovich Y., Sosenkin V., Rychagov A. et al. Carbon material with high specific surface area and high pseudocapacitance: possible application in supercapacitors. Microporous Mesoporous Mater., 2021, vol. 319, art. 111063, doi: https://doi.org/10.1016/j.micromeso.2021.111063
[17] Benaddi N., Bandosz T.J., Jagiello J. et al. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, vol. 38, no. 5, pp. 669–674, doi: https://doi.org/10.1016/S0008-6223(99)00134-7
[18] Popova A.A., Shubin I.N. Apparatus and technological design of the production process of activated highly porous carbon material. J. Phys.: Conf. Ser., 2021, art. 012025, doi: https://doi.org/10.1088/1742-6596/1942/1/012025
[19] Tkachev A.G., Melezhik A.V., Solomakho G.V. Sposob polucheniya mezoporistogo ugleroda [Method of obtaining mesoporous carbon]. Patent RU 2620404. Appl. 26.01.2016, publ. 25.05.2017. (In Russ.).
[20] Chesnokov N.V., Mikova N.M., Ivanov I.P. et al. Synthesis of carbon sorbents by chemical modi? cation of fossil coals and plant biomass. Zhurnal Sibirskogo federalnogo universiteta [Journal of Siberian Federal University. Chemistry], 2014, vol. 7, no. 1, pp. 42–53. EDN: RZDEPP (in Russ.).
[21] Zhu Y., Murali S., Stoller M.D. et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, vol. 332, no. 6037, pp. 1537–1541, doi: https://doi.org/10.1126/science.1200770
[22] Gun’ko V., Kozynchenko O., Tennison S. et al. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods. Carbon, 2012, vol. 50, no. 9, pp. 3146–3153, doi: https://doi.org/10.1016/j.carbon.2011.10.009
[23] Teng H., Wang S.C. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation. Carbon, 2000, vol. 38, no. 6, pp. 817–824, doi: https://doi.org/10.1016/S0008-6223(99)00160-8
[24] Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castell D. et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressure. Carbon, 2007, vol. 45, no. 2, pp. 293–303, doi: https://doi.org/10.1016/j.carbon.2006.09.022
[25] Liu Y., Shen Z., Yokogawa K. Investigation of preparation and structures of activated carbon nanotubes. Mater. Res. Bull., 2006, vol. 41, no. 8, pp. 1503–1512, doi: https://doi.org/10.1016/j.materresbull.2006.01.017
[26] Kopac T., Erdogan F.O. Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube–graphite mixture. J. Ind. Eng. Chem., 2009, vol. 15, no. 5, pp. 730–735, doi: https://doi.org/10.1016/j.jiec.2009.09.054
[27] Wepasnick K.A., Smith B.A., Schrote K.E. et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, vol. 49, no. 1, pp. 24–36, doi: https://doi.org/10.1016/J.CARBON.2010.08.034
[28] Xiao Z., Yang Z., Nie H. et al. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithiumesulfur batteries. J. Mater. Chem. A, 2014, vol. 2, no. 23, pp. 8683–8689, doi: https://doi.org/10.1039/C4TA00630E
[29] Dong W., Xia W., Xie K. et al. Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon, 2017, vol. 121, pp. 452–462, doi: https://doi.org/10.1016/J.CARBON.2017.06.019
[30] Popova A.A., Shubin I.N. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik TGTU [Transaction of thee TSTU], 2022, vol. 28, no. 3, pp. 476–486, doi: https://doi.org/10.17277/vestnik.2022.03.pp.476-486 (in Russ.).
[31] Shubin I.N., Popova A.A. The structural-hierarchical scheme of the process of high-temperature activation of carbon material. Vestnik TGTU [Transaction of thee TSTU], 2024, vol. 30, no. 2, pp. 308–316. (In Russ.).
[32] Raymundo-Pinero E., Azaıs P., Cacciaguerra T. et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon, 2005, vol. 43, no. 4, pp. 786–795, doi: https://doi.org/10.1016/j.carbon.2004.11.005
[33] Yoon S.H., Lim S., Song Y. et al. KOH activation of carbon nanofibers. Carbon, 2004, vol. 42, no. 8–9, pp. 1723–1729, doi: https://doi.org/10.1016/j.carbon.2004.03.006
[34] Delpeux S., Szostak K., Frackowiak E. et al. An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chem. Phys. Lett., 2005, vol. 404, no. 4–6, pp. 374–378, doi: https://doi.org/10.1016/j.cplett.2005.01.108
[35] Yoon S.H., Lim S., Song Y. et al. KOH activation of carbon nanofibers. Carbon, 2004, vol. 42, no. 8–9, pp. 1723–1729, doi: https://doi.org/10.1016/j.carbon.2004.03.006
[36] Jiménez V., Sánchez P., Valverde J.L. et al. Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. J. Colloid Interface Sci., 2009, vol. 336, no. 2, pp. 712–722, doi: https://doi.org/10.1016/j.jcis.2009.04.017
[37] Fierro V., Torne-Fernandez V., Celzard A. Highly microporous carbons prepared by activation of kraft lignin with KOH. Stud. Surf. Sci. Catal., 2007, vol. 160, pp. 607–614, doi: https://doi.org/10.1016/S0167-2991(07)80078-4
[38] Glinka N.L. Obshchaya khimiya [General chemistry]. Moscow, Integral-Press Publ., 2003. 727 p. (In Russ.).
[39] Kasatkin A.G. Osnovnye protsessy i apparaty khimicheskoy tekhnologii [Basic processes and apparatuses of chemical technology]. Moscow, Alyans Publ., 2005. 750 p. (In Russ.).
[40] Leontyeva A.I. Oborudovanie khimicheskikh proizvodstv [Equipment of chemical productions]. Moscow, Koloss Publ., 2008. 479 p. (In Russ.).
[41] Dytnerskiy Yu.I. Protsessy i apparaty khimicheskoy tekhnologii. Ch. 2. Massoobmennye protsessy i apparaty [Processes and apparatuses of chemical technology. P. 2. Mass-exchange processes and apparatuses]. Moscow, Khimiya Publ., 2002. 368 p. (In Russ.).
[42] Keltsev N.V. Osnovy adsorbtsionnoy tekhniki [Fundamentals of adsorption technique]. Moscow, Khimiya Publ., 1976. 512 p. (In Russ.).
[43] Arutyunov V.S., Golubeva I.A., Eliseev O.L. et al. Tekhnologiya pererabotki uglevodorodnykh gazov [Technology of processing of hydrocarbon gases]. Moscow, Izd-vo Yurayt Publ., 2023. 723 p. (In Russ.).
[44] Planovskiy A.N. Protsessy i apparaty khimicheskoy tekhnologii [Processes and apparatuses of chemical technology]. Moscow, Khimiya Publ., 1968. 848 p. (In Russ.).
[45] Tkachev A.G., Popova A.A., Shubin I.N. Reaktor dlya sinteza aktivirovannogo uglerodnogo materiala [Reactor for synthesising an activated carbon material]. Patent RU 2780200. Appl. 27.09.2021, publ. 20.09.2022. (In Russ.).
[46] Tkachev A.G., Shubin I.N., Popova A.A. Reaktor-neytralizator dlya aktivatsii uglerodnogo materiala [Reactor-neutralizer for activation of carbon material]. Patent RU 2794893. Appl. 19.10.2022, publ. 25.04.2023. (In Russ.).
[47] Tkachev A.G., Melezhik A.V., Popova A.A. et al. Reaktor dlya aktivatsii uglerodnogo materiala [Carbon material activation reactor]. Patent RU 2768123. Appl. 09.04.2021, publ. 23.03.2022. (In Russ.).