Stress-Strain State in the Joint Zone During Wedge-Press Welding of Dissimilar Materials
Authors: Khazgaliev R.G., Imayev M.F., Mulyukov R.R., Safin F.F. | Published: 25.10.2018 |
Published in issue: #10(703)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Welding, Allied Processes and Technologies | |
Keywords: computer simulation, wedge-press welding, dissimilar materials, strain distribution, stress distribution |
A computer simulation of the process of wedge-press welding of dissimilar materials is performed using titanium alloy and stainless steel with a nickel interlayer as an example. The initial model of the embedded part is a cylinder with a conical top, and the model of the corresponding part is a conical blind hole in the cylinder. The initial model of the nickel interlayer has the shape of a hollow cone 0.2 mm thick and is located between the parts to be joined. The differences between wedge-press welding at a constant deformation rate and at constant pressure are shown. When wedge-press welding at a constant deformation rate, the deformation is highly localized, which increases the probability of faulty fusion. In the case of wedge-press welding at constant pressure, the intensities of deformations and stresses in the interlayer are distributed more evenly, and the probability of formation of faulty fusion is considerably lower. The assembly II (embedded part made of titanium alloy) with an apex angle of the cone α = 90° is the most optimal assembly for wedge-press welding at constant pressure.
References
[1] Zhou Y. Microjoining and Nanojoining. Cambridge, England, Woodhead Publishing Ltd., CRC Press, 2008. 832 p.
[2] Shorshorov M.H. Metallovedenie svarki stali i splavov titana [Welding metallurgy of titanium steel and alloys]. Moscow, Nauka publ., 1965. 336 p.
[3] Ryabov V.R., Rabkin D.M., Kurochko R.S., Strizhevskaya L.G. Svarka raznorodnyh metallov i splavov [Welding of dissimilar metals and alloys]. Moscow, Mashinostroenie publ., 1984. 239 p.
[4] Karakozov E.S. Svarka metallov davleniem [Metal pressure welding]. Moscow, Mashinostroenie publ., 1986. 280 p.
[5] Mamalis A.G., Szalay A., Pantelis D.I., Pantazopoulos G., Kotsis I., Enisz M. Fabrication of multi-layered steel/superconductive ceramic (Y-Ba-K-Cu-O)/silver rods by explosive powder compaction and extrusion. Journal of Materials Processing Technology, 1996, vol. 57, pp. 155–163.
[6] Lorenz A., Bochenek E., Fischer R., Schneider R. A non-vacuum, room-temperature process for the application of solderable contacts to ceramic high-Tc superconductors. Journal of the Less-Common Metals, 1989, vol. 55, pp. 1912–1914.
[7] Valitova E.V., Ahunova A.H., Valitov V.A., Lutfullin R.Ya., Dmitriev S.V., Muhametrahimov M.H. Modelirovanie protsessa svarki davleniem zharoprochnogo nikelevogo splava s ispol’zovaniem ul’tramelkozernistoy prokladki [Modeling of heat-resistant nickel alloy pressure welding using ultrafine grained gasket]. Pis’ma o materialah [Letters on Materials]. 2014, vol. 4(3), pp. 190–194.
[8] Shorshorov M.H., Kolesnichenko V.A., Alekhin V.P. Klinopressovaya svarka davleniem raznorodnyh materialov [Pressure wedge welding of dissimilar materials]. Moscow, Metallurgiya publ., 1982. 112 p.
[9] Kundu S., Chatterjee S. Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer. Materials Characterization, 2008, vol. 59, pp. 631–637.
[10] Kundu S., Chatterjee S. Structure and properties of diffusion bonded transition joints bet-ween commercially pure titanium and type 304 stainless steel using a nickel interlayer. Journal of Materials Science, 2007, vol. 42, pp. 7906–7912.
[11] Khazgaliev R.G., Muhametrahimov M.H., Mulyukov R.R., Lutfullin R.Ya. Tverdofaznoe soedinenie titanovogo splava s nerzhaveyushchey stal’yu cherez nanostrukturirovannuyu prosloyku iz nikelevogo splava [Solid-phase connection of titanium alloy with stainless steel through a nanostructured layer of Nickel alloy]. Perspektivnye materialy [Journal of Advanced Materials]. 2011, no. 12, pp. 529–534.
[12] Thirunavukarasu G., Kundu S., Mishra B., Chatterjee S. Effect of Bonding Temperature on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, vol. 45(4), pp. 2067–2077.
[13] Khazgaliev R.G., Mukhametrahimov M.H., Imayev M.F., Shayakhmetov R.U., Mulyukov R.R. Special Features of Fracture of a Solid-State Titanium Alloy–Nickel–Stainless Steel Joint. Russian Physics Journal, 2015, vol. 58, is. 6, pp. 822–827.
[14] Khazgaliev R.G., Imayev M.F., Mulyukov R.R. Issledovanie vozmozhnosti uprochneniya soedineniya titanovogo splava s korrozionnostoykoy stal’yu, poluchennogo diffuzionnoy svarkoy cherez promezhutochnuyu prosloyku [Strengthening possibility investigation of joint of titanium alloy and stainless steel made by diffusion welding through interlayer]. Deformatsiya i Razrushenie Materialov [Russian metallurgy (Metally)]. 2017, no. 5, pp. 18–24.
[15] Khazgaliev R.G., Imayev M.F., Mulyukov R.R., Safin F.F. Modifitsirovanie poverhnosti prosloyki nikelya dlya delokalizatsii deformatsii pri svarke davleniem obraztsov titanovogo splava i nerzhaveyushchey stali [The effect of modification of nickel interlayer surface on the uniformity of deformation at pressure welding of titanium alloy and stainless steel]. Pis’ma o materialah [Letters on Materials]. 2015, vol. 5(2), pp. 133–137.