Improving the Fuel Supply Process in Locomotive Diesel Engines
Authors: Markov V.A., Furman V.V., Plakhov S.V. | Published: 13.04.2020 |
Published in issue: #4(721)/2020 | |
Category: Energy and Electrical Engineering | Chapter: Heat Engines | |
Keywords: diesel locomotive, diesel engine, rotational speed automatic control system, injection advance angle |
A topical problem of improving the fuel supply process in locomotive diesel engines in considered in this article. An ESUVT.01 type electronic control system developed by OOO PPP Dizelavtomatika (Saratov) for a D50 (6 ChN 31.8/33) locomotive diesel engine manufactured by Penzadizelmash is presented. It is shown that fuel efficiency and exhaust gas toxicity indicators can be significantly improved by optimizing the initial fuel supply phase, that is the injection advance angle. Experimental studies are conducted to assess the influence of this angle on the locomotive engine characteristics. Bench tests were carried out on a 1-PDG4D diesel generator consisting of the above-mentioned diesel engine and a traction generator MPT-84/39. As the result of the tests, dependencies of the diesel characteristics on the injection advance angle are obtained, and the need to optimize the injection advance angle according to the diesel operation mode is confirmed. Optimized values of the injection advance angle in the diesel characteristics modes are obtained. Fuel efficiency and exhaust gas toxicity indicators are determined at the optimized injection advance angle.
References
[1] Dvigateli vnutrennego sgoraniya. Teoriya rabochikh protsessov [Internal combustion engines. Workflow theory]. Ed. Lukanin V.N. Moscow, Vysshaya shkola publ., 2005. 479 p.
[2] Kossov E.E., Shapran E.N., Furman V.V. Sovershenstvovaniye rezhimov raboty silovykh energeticheskikh sistem teplovozov [Improving the operating modes of power energy systems of diesel locomotives]. Lugansk, VNU im. V. Dalya publ., 2006. 280 p.
[3] Markov V.A., Devyanin S.N., Mal’chuk V.I. Vpryskivaniye i raspylivaniye topliva v dizelyakh [Diesel fuel injection and atomization]. Moscow, Bauman Press, 2007. 360 p.
[4] Grekhov L.V., Ivashchenko N.A., Markov V.A. Sistemy toplivopodachi i upravleniya dizeley [Diesel fuel supply and control systems]. Moscow, Legion-Avtodata publ., 2005. 344 p.
[5] Grekhov L.V., Dragan Yu.E., Denisov A.A., Starkov E.E. Injection Rate Shaping with Possibilities of Conventional Design Common Rail System. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2015, no. 6(3), pp. 1890–1902.
[6] Markov V.A., Bashirov R.M., Gabitov I.I. Toksichnost’ otrabotavshikh gazov dizeley [Diesel exhaust toxicity]. Moscow, Bauman Press, 2002. 376 p.
[7] Gusakov C.B., Patrakhal’tsev H.H. The choice of a program for adjusting the angle of advance of the injection, optimized for the economy and toxicity of exhaust gases. Issledovaniye dvigateley i mashin: Sb. nauch. tr. UDN im. P. Lumumby [Study of engines and machines. Collection of scientific works of UDN named after P. Lumumba]. Moscow, 1980, pp. 18–21.
[8] Khatri K.K., Sharma D., Soni S.L., Kumar S., Tanwar D. Investigation of Optimum Fuel Injection Timing of Direct Injection CI Engine Operated on Preheated Karanj-Diesel Blend. Jordan Journal of Mechanical and Industrial Engineering, 2010, vol. 4, no. 5, pp. 629–640.
[9] Parlak A., Yasar H., Hasimoglu C., Kolip A. The Effects of Injection Timing on NOx Emissions of a Low Heat Rejection Indirect Diesel Injection Engine. Applied Thermal Engineering, 2005, vol. 25, pp. 3042–3052, doi: 10.1016/j.applthermaleng.2005.03.012
[10] Furman V.V., Ivanov V.A., Markov V.A. Electronic control systems for diesel engines. Engineering Journal: Science and Innovation, 2013, iss. 5, pp. 1–18 (in Russ.). Available at: http://engjournal.ru/issues/18.html, doi: 10.18698/2308-6033-2013-5-723
[11] Bosch. Sistemy upravleniya dizel’nymi dvigatelyami [Bosch Diesel engine control systems]. Moscow, Za rulem publ., 2004. 480 p.
[12] Pinskiy F.I., Davtyan R.I., Chernyak B.Ya. Mikroprotsessornyye sistemy upravleniya avtomobil’nymi dvigatelyami vnutrennego sgoraniya [Microprocessor control systems for automotive internal combustion engines]. Moscow, Legion-Avtodata publ., 2001. 136 p.
[13] Furman V.V. Electronically controlled diesel fuel supply system. Truck, 2014, no. 9, pp. 10–14 (in Russ.).
[14] Hiemesch O., Lonkai G., Schenkermayr G. The BMW emission control concept for diesel models. MTZ, 1990, vol. 51, no. 5, pp. 196–200.
[15] Kawai M., Miyagi H., Nakano J. Toyota’s New Microprocessor-Based Diesel Engine Control System for Passenger Cars. IEEE Transaction on Industrial Electronics, 1985, vol. 32, no. 4, pp. 289–293, doi: 10.1109/TIE.1985.350099
[16] Nishizawa K., Ishiwata H., Yamaguchi S. A New Concept of Diesel Fuel Injection — Timing and Injection Control System. SAE Technical Paper Series, 1987, no. 870434, pp. 1–9.
[17] Parker R.F. Future Fuel Injection Requirements for Mobile Equipment Diesel Engines. Diesel and Gas Turbine Progress, 1976, vol. 42, no. 10, pp. 18–19.
[18] Shiozaki M., Hobo N., Akahori J. Development of a Fully Capable Electronic Control System for Diesel Engine. SAE Technical Paper Series, 1985, no. 850172, pp. 1–8, doi: 10.4271/850172
[19] Trenne M.U., Ives A.P. Closed Loop Design for Electronic Diesel Injection Systems. SAE Technical Paper Series, 1982, no. 820447, pp. 133–139, doi: 10.4271/820447
[20] Grekhov L.V., Kuleshov A.S. Matematicheskoye modelirovaniye i komp’yuternaya optimizatsiya toplivopodachi i rabochikh protsessov dvigateley vnutrennego sgoraniya [Mathematical modeling and computer optimization of fuel supply and working processes of internal combustion engines]. Moscow, Bauman Press, 2000. 64 p.
[21] Kossov E.E., Sukhoparov S.I. Optimizatsiya rezhimov raboty teplovoznykh dizel’-generatorov [Optimization of operating modes of diesel diesel generators]. Moscow, Intekst publ., 1999. 184 p.
[22] Faynleyb B.N., Ginzburg A.M., Volkov V.I. Fuel injection timing optimization. Dvigatelestroyeniye, 1981, no. 2, pp. 16–19 (in Russ.).
[23] Krutov V.I., Sharov G.I. Piston-optimized turbo piston engine control. Dvigatelestroyeniye, 1989, no. 9, pp. 19–21 (in Russ.).
[24] Parsadanov I.V. Povysheniye kachestva i konkurentosposobnosti dizeley na osnove kompleksnogo toplivno-ekologicheskogo kriteriya [Improving the quality and competitiveness of diesel engines based on an integrated fuel and environmental criterion]. Kharkov, KhPI publ., 2003. 244 p.
[25] Patrakhal’tsev N.N. Neustanovivshiyesya rezhimy raboty dvigateley vnutrennego sgoraniya [Unsteady operating modes of internal combustion engines]. Moscow, RUDN publ., 2009. 380 p.
[26] Markov V.A., Furman V.V., Plakhov S.V., Sa B. Experimental Studies of the Rotational Speed Automatic Control System for Locomotive Engine Shafts. BMSTU Journal of Mechanical Engineering, 2020, no. 3, pp. 35–50 (in Russ.), doi: 10.18698/0536-1044-2020-3-35-50
[27] Furman V.V. Uluchsheniye ekspluatatsionno-tekhnicheskikh kharakteri-stik dizel’-generatorov teplovozov putem sozdaniya i sovershenstvovaniya sistem elektronnogo upravleniya. Dokt. Diss. [Improving the operational and technical characteristics of diesel locomotive diesel generators by creating and improving electronic control systems. Doct. Diss.]. Moscow, Bauman Press, 2017. 321 p.
[28] GOST R 51250–99. Dvigateli vnutrennego sgoraniya porshnevyye. Dymnost’ otrabotavshikh gazov. Normy i metody opredeleniya [State Standard R 51250—99. Internal combustion reciprocating engines. Visible pollutants. Limit values and test methods]. Moscow, Standartinform publ., 1999. 20 p.
[29] GOST R 51249–99. Dvigateli vnutrennego sgoraniya porshnevyye. Vybrosy vrednykh veshchestv s otrabotavshimi gazami. Normy i metody opredeleniya [State Standard R 51249–99. Internal combustion reciprocating engines. Emissions of harmful substances with the exhaust gases. Limit values and test methods]. Moscow, Standartinform publ., 1999. 42 p.