Development of a Technique for Calculating the Temperature of the Multi-Fuel Nozzle Inner Wall in order to Prevent Sedimentation and Overheating
Authors: Altunin K.V. | Published: 13.05.2021 |
Published in issue: #6(735)/2021 | |
Category: Energy and Electrical Engineering | Chapter: Heat Engines | |
Keywords: multifuel nozzle, internal wall temperature, prevention of deposit formation |
The article presents the results of a theoretical study on obtaining the formula for calculating the temperature of the inner wall of the multi-fuel nozzle cooling jacket. The problem of overheating these nozzles, as well as the formation of carbon-containing deposits in liquid hydrocarbon fuels and coolants, is discussed. The different ways of dealing with sediment formation, including cooling the fuel channel wall to 373 K are considered. In the case of multi-fuel nozzles, several fuels and coolers can be effectively used at once. The properties of some coolants, including TS-1 kerosene and natural gas, have been investigated. Based on the obtained formula for determining the temperature of the multi-fuel nozzle cooling jacket, a theoretical calculation of the internal temperatures of nozzles of the same mass with several coolants was carried out. An analysis of the results of a theoretical study showed that multi-fuel nozzles are cooled better than single-fuel nozzles and allow predicting fuel consumption in order to achieve the required wall temperature, prevent overheating and sediment formation.
References
[1] Malygina M.V. Numerical investigation multifuel combustion gas turbine combustion chamber module. Vestnik SGAU [Vestnik of Samara University], 2011, no. 3-1, pp. 143–150 (in Russ.).
[2] Murashev P.M. Mnogotoplivnaya forsunka dlya gazoturbinnykh dvigateley i ustanovok [Multi-fuel nozzle for gas-turbine engines and plants]. Patent RU 110818. Appl. 29.06.2011, publ. 27.11.2011.
[3] Burdykin V.D., Kozlov V.G., Kondrashova E.V. Mnogotoplivnaya forsunka [Multi-fuel nozzle]. Patent RU 166189. Appl. 09.03.2016, publ. 20.11.2016.
[4] Mal’chuk V.I., Shatrov M.G., Kudryashov B.A., Skorodelov S.D. Forsunka dlya podachi dvukh vidov topliva v dizel’nyy dvigatel’ [Input nozzle for two types of fuel into diesel engine]. Patent RU 2541674. Appl. 31.12.2013, publ. 20.02.2015.
[5] Stasyuk A.V., Kalashnik N.N., Priladyshev D.Yu., et al. Forsunka dvukhtoplivnaya «gaz plyus zhidkoe toplivo» [Two-fuel nozzle “gas plus liquid fuel”]. Patent RU 2578785. Appl. 27.10.2014, publ. 27.03.2016.
[6] Altunin K.V. Funktsional’no-stoimostnoy analiz gorelochnykh ustroystv i forsunok [Functional-cost analysis for burner devices and nozzles]. Kazan’, KNITU-KAI Publ., 2020. 156 p.
[7] Yanovskiy L.S., Ivanov V.F., Galimov F.M., et al. Koksootlozheniya v aviatsionnykh i raketnykh dvigatelyakh [Carbon deposit in aviation and rocket engines]. Kazan’, Abak Publ., 1999. 284 p.
[8] Altunin V.A. Issledovanie osobennostey teplootdachi k uglevodorodnym goryuchim i okhladitelyam v energeticheskikh ustanovkakh mnogorazovogo ispol’zovaniya. Kn. 1 [Study on properties of thermal transfer to hydrocarbon fuel and coolants in reusable power plants. Vol. 1]. Kazan’, KGTU im. V.I. Ul’yanova-Lenina Publ., 2005. 272 p.
[9] Van Nostrand W.Z., Leach S.H., Haluske J. Economic penalty associated with the fouling of refinery heat transfer equipment. In: Fouling of heat transfer equipment. Hemisphere, 1981, pp. 619–643 (in Russ.).
[10] Chertkov Ya.B. Sovremennye i perspektivnye uglevodorodnye reaktivnye i dizel’nye topliva [Modern and promising hydrocarbon jet and diesel fuels]. Moscow, Khimiya Publ., 1968. 356 p.
[11] Altunin K.V. Forsunka [Nozzle]. Patent RU 2388966. Appl. 02.12.2008, publ. 10.05.2010.
[12] Altunin K.V. Forsunka [Nozzle]. Patent RU 2447362. Appl. 26.07.2010, publ. 10.04.2012.
[13] Kalghatgi G.T. Combustion chamber deposits in spark-ignition engines: a literature review. SAE Tech. Paper, 1995, no. 952443, doi: https://doi.org/10.4271/952443
[14] Kharin A.A. Khimmotologicheskoe obespechenie nadezhnosti aviatsionnykh gazoturbinnykh dvigateley [Chemmotologic reliability assurance of aviation gas turbine engines]. Moscow, Evropeyskiy tsentr po kachestvu Publ., 2002. 288 p.
[15] Dubovkin N.F., Yanovskiy L.S., Kharin A.A., et al. Topliva dlya vozdushno-reaktivnykh dvigateley [Fuels for aerojet engines]. Moscow, MATI Publ., 2001. 443 p.
[16] Yanovskiy L.S., Kharin A.A., Babkin V.I. Osnovy khimmotologii [Fundamentals pf chemmotology]. Moscow-Berlin, Direkt-Media Publ., 2016. 484 p.
[17] Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P. Fiziko-khimicheskie i ekspluatatsionnye svoystva reaktivnykh topliv [Physical-chemical and exploitation properties of jet fuels]. Moscow, Khimiya Publ., 1985. 240 p.
[18] Altunin K.V. [Theoretical evaluation of fuel canal wall temperature of a nozzle in order to prevent deposit formation]. LXXIV Mezhd. nauch. chten. Sb. st. mezhd. nauch.-prakt. konf. [LXXIV Int. Sci. Readings. Proc. Int. Sci.-Pract. Conf.]. Moscow, EFIR, 2020, pp. 36–38 (in Russ.).
[19] Savin I.K. Teoreticheskie osnovy teplotekhniki (kratkiy kurs). Ch. II. Teploperedacha [Theoretical foundations of thermal engineering (short course). P. II. Heat transfer]. Petrozavodsk, Izd-vo PetrGU Publ., 2008. 172 p.
[20] Bukhmirov V.V. Raschet koeffitsienta teplootdachi [Calculation of heat transfer coefficient]. Ivanovo, IGEU Publ., 2007. 37 p.
[21] Altunin V.A., Altunin K.V., Aliev I.N., et al. Analysis of investigations of electric fields in different media and conditions. Inzhenerno-fizicheskiy zhurnal, 2012, vol. 85, no. 4, pp. 881–896 (in Russ.). (Eng. version: J. Eng. Phys. Thermophy., 2012, vol. 85, no. 4, pp. 959–979, doi: https://doi.org/10.1007/s10891-012-0736-4)
[22] Altunin K.V. Elaboration of a criterion equation for forced kerosene motion with a new electric convection number. Vestnik KGTU im. A.N. Tupoleva [Vestnik of KNRTU n.a. A.N. Tupolev], 2020, no. 3, pp. 30–33 (in Russ.).
[23] Altunin K.V. Razrabotka formuly rascheta temperatury vnutrenney stenki mul’titoplivnoy forsunki s tsel’yu predotvrashcheniya osadkoobrazovaniya i peregreva. Innovatsionnye nauchnye issledovaniya, 2020, no 12-1 (2), pp. 68–79.(in Russ.).
[24] Shadrina E.M., Volkova G.V. Opredelenie teplofizicheskikh svoystv gazov, zhidkostey i vodnykh rastvorov veshchestv [Evaluation of thermal-physical properties of gases, liquids and water solutions]. Ivanovo, IGKhTU Publ., 2009. 80 p.