Selection of the Method for Reciprocating Compressor Capacity Control When the Suction Gas Temperature Changes
Authors: Degtyareva T.S., Perevalov P.S. | Published: 27.03.2022 |
Published in issue: #4(745)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Heat Engines | |
Keywords: reciprocating compressor; capacity regulation; suction gas temperature; regulation depth; shaft speed |
The article demonstrates the necessity of controlling the volumetric capacity of the fuel compressor to maintain a constant pressure at the inlet to the combustion chamber when the temperature of the gas at the suction is changing. The turbine consumption remains constant over time. The range of change in the reciprocating fuel compressor volumetric capacity is determined depending on the change in the intake gas temperature. The possibility of capacity regulation by changing the shaft speed and connecting an additional dead volume is considered. The available regulation depth is determined.
References
[1] Kostyuk A.G., ed. Turbiny teplovykh i atomnykh elektricheskikh stantsiy [Turbines of thermal and nuclear power plants]. Moscow, Izd-vo MEI Publ., 2001. 488 p. (In Russ.).
[2] Mikhal’tsev V.E., Molyakov V.D. Raschet parametrov tsikla pri proektirovanii gazoturbinnykh dvigateley i kombinirovannykh ustanovok [Calculation of cycle parameters at design of gas-turbine engines and integrated plants]. Moscow, Bauman MSTU Publ., 2014. 58 p. (In Russ.).
[3] Kolokolova N.A., Garris N.A. About the choice of method of laying pipelines in permafrost. Transport i khranenie nefteproduktov i uglevodrodnogo syr’ya [Transport and Storage of Oil and Hydrocarbons], 2013, no. 1, pp. 13–17. (In Russ.).
[4] Usinsk: pochasovoy prognoz na 10.09.2019 [Usinsk: hourly forecast for 09.10.2019]. Available at: https://world-weather.ru/pogoda/russia/usinsk/10-september/#2019 (accessed 15 February 2022). (In Russ.).
[5] GOST R 54403–2011. Ustanovki gazoturbinnye dlya privoda turbogeneratorov. Obshchie tekhnicheskie usloviya [State standard GOST R 54403-2011. Stationary gas turbines for drive of turbogenerators. General specifications]. Moscow, Standartinform Publ., 2012. 14 p. (In Russ.).
[6] Kompressory Ariyel’. Mirovoy standart kachestva [Ariel compressors world standard of quality]. Available at: https://docplayer.com/46570232-Kompressory-ariel-mirovoy-standart-kachestva.html (accessed 15 February 2022). (In Russ.).
[7] Plastinin P.I. Porshnevye kompressory. T. 1. Teoriya i raschet [Piston compressors. Vol. 1. Theory and calculation]. Moscow, Koloss Publ., 2006. 398 p. (In Russ.).
[8] Plastinin P.I. Porshnevye kompressory. T. 2. Osnovy proektirovaniya. Konstruktsii [Piston compressors. Vol. 2. Design fundamentals. Constructions.]. Moscow, Koloss Publ., 2008. 711 p. (In Russ.).
[9] GSSSD 160-93. Tablitsy standartnykh spravochnykh dannykh. Gaz prirodnyy raschetnyy. Plotnost’, faktor szhimaemosti, ental’piya, entropiya, izobarnaya teploemkost’, skorost’ zvuka, pokazatel’ adiabaty i koeffitsient ob’’emnogo rasshireniya pri temperaturakh 250-450 K i davleniyakh 0,1-12 Mpa [9 GSSSD 160-93. Tables of standard reference data. Natural gas rated. Density, compressibility factor, entalpy, entropy, isobaric specific heat, velocity of sound, index of adiabate and coefficient of volume thermal expansion in the temperature range 250…450 К and pressure range 0,1...12 MPa]. Moscow, Gossandart Publ., GSSSD Publ., 1993. 21 p. (In Russ.).
[10] Frenkel’ M.I. Porshnevye kompressory [Piston compressors]. Leningrad, Mashinostronie Publ., 1969. 744 p. (In Russ.).
[11] Electrical variable clearance pocket system for natural gas applications. hoerbiger.com: website. https://www.hoerbiger.com/en-1/pages/618 (accessed: 15.01.2022).