Comparative Analysis of Mass-Dimensional A Comparative Analysis of Mass-Dimensional Indicators of Crossheadless and Crosshead Piston Hybrid Energy Positive Displacement Machines
Authors: Shcherba V.E., Tegzhanov A.S., Nosov E.Y., Paramonov A.M., Blinov V.N., Khrapskii S.F. | Published: 23.09.2019 |
Published in issue: #9(714)/2019 | |
Category: Energy and Electrical Engineering | Chapter: Hydraulic Machines and Hydropneumatic Units | |
Keywords: hybrid energy machine, mass-dimensional indicators, compressor section, pump section, crosshead, piston |
Currently, one of the main ways to improve the efficiency of piston compressors and volumetric pumps is to combine them into a single unit, called a piston hybrid energy machine. Recently, a new class of crossheadless piston hybrid energy positive displacement machines has appeared. In this work, a comparison of mass-dimensional indicators of experimental crosshead and crossheadless hybrid energy machines is performed. The analysis of the results shows that the crossheadless machine has significantly smaller masses of moving parts performing reciprocating motion (almost 3 times) and a smaller maximal overall size (almost 1.5 times) in comparison to the crosshead machine. The specific mass-dimensional indicators of the two machines are comparable.
References
[1] Shcherba V.E., Bolshtyanskiy A.P., Kaygorodov S.Yu., Kuzeyeva D.A. Analysis of advantages of integration of displacement compressors and pumps into single unit. Vestnik mashinostroyeniya, 2015, no. 12, pp. 15–19 (in Russ.).
[2] Shcherba V.E. Rabochiye protsessy kompressorov ob”yemnogo deystviya [Workflows compressors volumetric actions]. Moscow, Nauka publ., 2008. 319 p.
[3] Shcherba V.E., Shalay V.V., Kondyurin A.Yu., Ovsyannikov A.Yu., Dorofeyev E.A., Kryukov K.S. Analysis of deformation, mass-16 exchange and thermal interactions in the process of compression in volume-effect pumps. Vestnik mashinostroyeniya, 2018, no. 10, pp. 16–20 (in Russ.).
[4] Shcherba V.E., Shalay V.V., Kryukov K.S., Kuzhbanov A.K., Tegzhanov A.S. Utilization of compressed gas heat for fluid compression and movement in a displacement pump. Khimicheskoye i neftegazovoye mashinostroyeniye, 2019, no. 3, pp. 24–27 (in Russ.).
[5] Shcherba V.E., Shalay V.V., Grigor’yev A.V., Bazhenov A.M., Kondyurin A.Yu. Analysis of Theoretical and Experimental Results on the Effect of Injection Pressure in the Pump Section on the Working Processes and Characteristics of a Piston Hybrid Power Machine with a Slotted Seal of a Stepped Type. Journal of Siberian Federal University. Engineering & Technologies, 2018, vol. 11, no. 5, pp. 591–603 (in Russ.), doi: 10.17516/1999-494X-0058
[6] Shcherba V.E., Bolshtyanskiy A.P., Rybak A.T., Nosov E.Yu., Tegzhanov A.S. Constructive schemes of hybrid machines of volumetric action. Omskiy nauchnyy vestnik, 2018, no. 1(157), pp. 10–18 (in Russ.), doi: 10.25206/1813-8225-2018-157-10-18
[7] Shcherba V.E., Aver’yanov G.S., Kalekin V.S., Korneyev S.V., Tegzhanov A.S. Calculation of rational values of injection pressures in the compressor and pumping sections of a crossheadless reciprocating hybrid power machine. Khimicheskoye i neftegazovoye mashinostroyeniye, 2018, no. 6, pp. 30–32 (in Russ.).
[8] Shcherba V.E., Bolshtyanskiy A.P., Kondyurin A.Yu., Bazhenov A.M., Zaloznov I.P., Grigor’yev A.V. Gibridnaya mashina s tronkovym porshnem [Hybrid machine with throne piston]. Patent RF no. 2644424, 2018.
[9] Bazhenov A.M., Shcherba V.E., Shalay V.V., Grigor’yev A.V., Kondyurin A.Yu. Mathematical modeling of the working processes of a piston hybrid energy machine of volumetric action with a slotted step seal. Vestnik mashinostroyeniya, 2019, no. 2, pp. 55–60 (in Russ.).
[10] Shcherba V.E., Shalay V.V., Nosov E.Yu., Kondyurin A.Yu., Nesterenko G.A., Tegzhanov A.S., Bazhenov A.M. Comparative analysis of the results of experimental studies of a reciprocating hybrid power machine with smooth and stepped gap seals. Khimicheskoye i neftegazovoye mashinostroyeniye, 2018, no. 7, pp. 25–29 (in Russ.).
[11] Shcherba V.E., Tegzhanov A.S., Bolshtyanskiy A.P., Nosov E.Yu. Gibridnaya mashina ob”yemnogo deystviya s tronkovym porshnem [Hybrid machine volumetric with piston tankovy]. Patent RF no. 2686536, 2019.
[12] Tegzhanov A.S., Shcherba V.E., Nosov E.Yu. Razrabotka opytnogo obraztsa beskreytskopfnoy porshnevoy gibridnoy energeticheskoy mashiny. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 22, no. 11, pp. 63–70.
[13] Plastinin P.I. Porshnevyye kompressory [Piston compressor]. T. 1. Moscow, Kolos publ., 2006. 397 p.
[14] Frenkel’ M.I. Porshnevyye kompressory [Piston compressor]. Leningrad, Mashinostroyeniye publ., 1969. 744 p.
[15] Fotin B.S., Pirumov I.B., Prilutskiy I.K., Plastinin P.I. Porshnevyye kompressory [Piston compressor]. Leningrad, Mashinostroyeniye publ., Leningr. otd-niye, 1987. 372 p.