Study of the operating efficiency of centrifugal separators for gas preparation
Authors: Ozherelev D.A., Shalai V.V., Ridel I.A. | Published: 01.09.2022 |
Published in issue: #9(750)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Hydraulic Machines and Hydropneumatic Units | |
Keywords: centrifugal separator, natural gas, separation efficiency, associated petroleum gas, integrated gas treatment unit |
There exist two ways to intensify production in an oil and gas facility: the first one involves accepting associated petroleum gas for treatment from third-party subsoil users and supplying gas to the main gas pipeline in accordance with the technical specifications, while the second one concerns upgrading crucial processing equipment, which includes separators. Associated petroleum gas as mixed with natural gas affects the separation process in terms of a significant decrease in separator efficiency for the same set of operational parameters due to increasing the mass flow rate. In turn, this low separation efficiency results in the separated gas ablating the liquid phase. This factor varies over a wide range and depends on the design and actual performance of the separator, as well as on the pressure, temperature and composition of the gas mixture supplied. We consider a tentative layout for a centrifugal separator of a combined design for treating natural gas containing a quantity of associated petroleum gas. The paper presents numerical computation results for the separation simulation, as well as data obtained during actual separator operation for different heat and pressure values. We established that the separator design proposed provides high efficiency of gas treatment.
References
[1] Tronov V.P. Promyslovaya podgotovka nefti [Oil routine preprocessing]. Kazan’, Fen Publ., 2000. 416 p. (In Russ.).
[2] Speysher V.A., Gorbanenko A.D. Povyshenie effektivnosti ispol’zovaniya gaza i mazuta v energeticheskikh ustanovkakh [Raising efficiency of oil and mazut usage in power plants]. Moscow, Energoatomizdat Publ., 1991. 183 p. (In Russ.).
[3] Guzhov A.I. Sovmestnyy sbor i transport nefti i gaza [Joint oil and gas collection and transportation]. Moscow, Nedra Publ., 1973. 280 p. (In Russ.).
[4] STO Gazprom 089-2010. Gaz goryuchiy prirodnyy, postavlyaemyy i transportiruemyy po magistral’nym gazoprovodam. Tekhnicheskie usloviya [Organization standard STO Gazprom 089-2010. Flammable natural gas supplied and transported through major pipelines. Technic specifications]. Moscow, Standart organizatsii Publ., 2011. 18 p. (In Russ.).
[5] Tronov V.P. Separatsiya gaza i sokrashchenie poter’ nefti [Gas separation and reduce of oil loses]. Kazan’, Fen Publ., 2002. 408 p. (In Russ.).
[6] Kilinnik S.V. Razrabotka elementov konstruktivnykh skhem dlya pryamotochnykh tsentrobezhnykh gazoseparatorov. Avtoref. diss. kand. tekh. nauk [Development of structural scheme elements for direct-flow centrifugal breakout tankages. Abs. kand. tech. sci. diss.]. Moscow, KubGTU Publ., 2005. 24 p. (In Russ.).
[7] STO Gazprom 2-2.1-588-2011. Tipovye tekhnicheskie trebovaniya k tekhnologicheskomu oborudovaniyu dlya ob’’ektov dobychi gaza [Organization standard STO Gazprom 2-2.1-588-2011. Typical technical requirements to technological equipment for gas exploitation project site]. Moscow, Standart organizatsii Publ., 2012. 117 p. (In Russ.).
[8] Mednikov E.P. Turbulentnyy perenos i osazhdenie aerozoley [Turbulent transfer and aerosol deposition]. Moscow, Nauka Publ., 1981. 178 p. (In Russ.).
[9] Nazarov A.V. Razvitie metodov matematicheskogo modelirovaniya dlya proektirovaniya i analiza razrabotki neftegazokondensatnykh mestorozhdeniy. Diss. dok. tekh. nauk [Development of mathematical modelling methods for design and analysis of oil-gas condensate fields. Doc. tech. sci. diss.]. Ukhta, VNIIGAZ Publ., 2012. 430 p. (In Russ.).
[10] Boyko S.I., Mil’shteyn L.M., Zibert G.K. et al. [On development of three-phase separator with coalescing elements]. V: Pererabotka neftyanykh gazov. Vyp. 5 [In: Oil gas processing. Vol. 5]. Moscow, VNIIOENG Publ., 1979, pp. 134–138. (In Russ.).
[11] Tolstov V.A., Romashov A.P., Panin V.V. Methods and tools for determination of dropping liquid content and mechanical admixtures in gas flow. Transport i podzemnoe khranenie gaza, 2012, no. 1, pp. 18–31. (In Russ.).
[12] Tolstov V.A., Paley B.S. Izmeritel’ unosa zhidkosti. Rukovodstvo po ekspluatatsii GPR 420 [Measuring device for liquid entrainment. GPR420 user guide]. Podol’sk, Gazprom Publ., 2013. 27 p. (In Russ.).
[13] Pavlov K.F., Romankov P.G., Noskov A.A. Primery i zadachi po kursu protsessov i apparatov khimicheskoy tekhnologii [Examples and problems on processes and apparatus of chemical technology course]. Leningrad, Khimiya Publ., 1987. 576 p. (In Russ.).
[14] Perry J.H. Chemical engineers’ handbook. McGraw-Hill, 1963. 1919 p. (Russ. ed.: Spravochnik inzhenera-khimika. T. 2. Leningrad, Khimiya Publ., 1969. 504 p.)
[15] Kasperovich A.G., Magaril R.Z. Balansovye raschety pri proektirovanii i planirovanii pererabotki uglevodorodnogo syr’ya gazokondensatnykh i neftegazokondensatnykh mestorozhdeniy [Balance settlements for design and planning of processing raw hydrocarbons from oil and gas condensate fields]. Moscow, KDU Publ., 2008. 412 p. (In Russ.).